These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 17443395)

  • 1. Modern biomaterials: a review - bulk properties and implications of surface modifications.
    Roach P; Eglin D; Rohde K; Perry CC
    J Mater Sci Mater Med; 2007 Jul; 18(7):1263-77. PubMed ID: 17443395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implant surfaces and interface processes.
    Kasemo B; Gold J
    Adv Dent Res; 1999 Jun; 13():8-20. PubMed ID: 11276751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is surface chemical composition important for orthopaedic implant materials?
    Meredith DO; Riehle MO; Curtis AS; Richards RG
    J Mater Sci Mater Med; 2007 Feb; 18(2):405-13. PubMed ID: 17323175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment.
    MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL
    Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of micro-topography on cellular response and the implications for silicone implants.
    von Recum AF; van Kooten TG
    J Biomater Sci Polym Ed; 1995; 7(2):181-98. PubMed ID: 7654632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How do wettability, zeta potential and hydroxylation degree affect the biological response of biomaterials?
    Spriano S; Sarath Chandra V; Cochis A; Uberti F; Rimondini L; Bertone E; Vitale A; Scolaro C; Ferrari M; Cirisano F; Gautier di Confiengo G; Ferraris S
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():542-555. PubMed ID: 28254329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vitro multi-parametric approach to measuring the effect of implant surface characteristics on cell behaviour.
    Davies JT; Lam J; Tomlins PE; Marshall D
    Biomed Mater; 2010 Feb; 5(1):15002. PubMed ID: 20057015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility and the efficacy of medical implants.
    Shard AG; Tomlins PE
    Regen Med; 2006 Nov; 1(6):789-800. PubMed ID: 17465760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise control of cell adhesion by combination of surface chemistry and soft lithography.
    Zheng W; Zhang W; Jiang X
    Adv Healthc Mater; 2013 Jan; 2(1):95-108. PubMed ID: 23184447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical and physical modifications to poly(dimethylsiloxane) surfaces affect adhesion of Caco-2 cells.
    Wang L; Sun B; Ziemer KS; Barabino GA; Carrier RL
    J Biomed Mater Res A; 2010 Jun; 93(4):1260-71. PubMed ID: 19827104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mediation of biomaterial-cell interactions by adsorbed proteins: a review.
    Wilson CJ; Clegg RE; Leavesley DI; Pearcy MJ
    Tissue Eng; 2005; 11(1-2):1-18. PubMed ID: 15738657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding interactions between biomaterials and biological systems using proteomics.
    Othman Z; Cillero Pastor B; van Rijt S; Habibovic P
    Biomaterials; 2018 Jun; 167():191-204. PubMed ID: 29571054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-induced changes in protein adsorption and implications for cellular phenotypic responses to surface interaction.
    Allen LT; Tosetto M; Miller IS; O'Connor DP; Penney SC; Lynch I; Keenan AK; Pennington SR; Dawson KA; Gallagher WM
    Biomaterials; 2006 Jun; 27(16):3096-108. PubMed ID: 16460797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Modelling of Peptide-Based Materials for Biomedical Applications.
    Walsh TR
    Adv Exp Med Biol; 2017; 1030():37-50. PubMed ID: 29081049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in biomaterials and surface technologies.
    Richards RG; Moriarty TF; Miclau T; McClellan RT; Grainger DW
    J Orthop Trauma; 2012 Dec; 26(12):703-7. PubMed ID: 22913967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of implant surface characteristics in the healing of bone.
    Kieswetter K; Schwartz Z; Dean DD; Boyan BD
    Crit Rev Oral Biol Med; 1996; 7(4):329-45. PubMed ID: 8986395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical principles of tissue material interactions.
    Thull R
    Biomol Eng; 2002 Aug; 19(2-6):43-50. PubMed ID: 12202160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-/nano-structured superhydrophobic surfaces in the biomedical field: part I: basic concepts and biomimetic approaches.
    Lima AC; Mano JF
    Nanomedicine (Lond); 2015 Jan; 10(1):103-19. PubMed ID: 25597772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Advances in interaction of macrophages with tissue engineering related biomaterials].
    Li X; Wang J; Yin Y; Luo C; Yao K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):487-90. PubMed ID: 18610649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of chemical surface modification of bioceramics: effects on protein adsorption and cellular response.
    Lee WH; Loo CY; Rohanizadeh R
    Colloids Surf B Biointerfaces; 2014 Oct; 122():823-834. PubMed ID: 25092582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.