These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 17443395)

  • 21. Surface modification to control protein/surface interactions.
    Yuan L; Yu Q; Li D; Chen H
    Macromol Biosci; 2011 Aug; 11(8):1031-40. PubMed ID: 21337519
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects.
    Kumar S; Nehra M; Kedia D; Dilbaghi N; Tankeshwar K; Kim KH
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110154. PubMed ID: 31753376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designing implant surface topography for improved biocompatibility.
    Harvey AG; Hill EW; Bayat A
    Expert Rev Med Devices; 2013 Mar; 10(2):257-67. PubMed ID: 23480094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell adhesion to biomaterials: correlations between surface charge, surface roughness, adsorbed protein, and cell morphology.
    Hallab NJ; Bundy KJ; O'Connor K; Clark R; Moses RL
    J Long Term Eff Med Implants; 1995; 5(3):209-31. PubMed ID: 10172729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface treatments and roughness properties of Ti-based biomaterials.
    Bagno A; Di Bello C
    J Mater Sci Mater Med; 2004 Sep; 15(9):935-49. PubMed ID: 15448401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell adhesion on artificial materials for tissue engineering.
    Bacáková L; Filová E; Rypácek F; Svorcík V; Starý V
    Physiol Res; 2004; 53 Suppl 1():S35-45. PubMed ID: 15119934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Review paper: surface modification for bioimplants: the role of laser surface engineering.
    Kurella A; Dahotre NB
    J Biomater Appl; 2005 Jul; 20(1):5-50. PubMed ID: 15972362
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of surface and biomolecules on magnesium degradation and mesenchymal stem cell adhesion.
    Liu H
    J Biomed Mater Res A; 2011 Nov; 99(2):249-60. PubMed ID: 21976450
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of nanostructured materials on biointerfacial interactions.
    Koegler P; Clayton A; Thissen H; Santos GN; Kingshott P
    Adv Drug Deliv Rev; 2012 Dec; 64(15):1820-39. PubMed ID: 22705547
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphology and growth of murine cell lines on model biomaterials.
    Godek ML; Duchsherer NL; McElwee Q; Grainger DW
    Biomed Sci Instrum; 2004; 40():7-12. PubMed ID: 15133927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface modifications of magnesium alloys for biomedical applications.
    Yang J; Cui F; Lee IS
    Ann Biomed Eng; 2011 Jul; 39(7):1857-71. PubMed ID: 21445692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bridging the gap between physicochemistry and interpretation prevalent in cell-surface interactions.
    Dubiel EA; Martin Y; Vermette P
    Chem Rev; 2011 Apr; 111(4):2900-36. PubMed ID: 21319750
    [No Abstract]   [Full Text] [Related]  

  • 33. Cellular responses evoked by different surface characteristics of intraosseous titanium implants.
    Feller L; Jadwat Y; Khammissa RA; Meyerov R; Schechter I; Lemmer J
    Biomed Res Int; 2015; 2015():171945. PubMed ID: 25767803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Surface modifications of implants. Part 1 : Material technical and biological principles].
    Jäger M
    Orthopade; 2018 Apr; 47(4):347-366. PubMed ID: 29632974
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications.
    Metwally S; Stachewicz U
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109883. PubMed ID: 31500046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation.
    Song F; Koo H; Ren D
    J Dent Res; 2015 Aug; 94(8):1027-34. PubMed ID: 26001706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Advances of research of hydrophilic/hydrophobic surface effect on cell biologic behaviors in vitro].
    Shen Y; Wang G; Shen N; Wu J; Liu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Dec; 28(6):1237-41. PubMed ID: 22295721
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Viscoelastic properties of fibrinogen adsorbed to the surface of biomaterials used in blood-contacting medical devices.
    Weber N; Pesnell A; Bolikal D; Zeltinger J; Kohn J
    Langmuir; 2007 Mar; 23(6):3298-304. PubMed ID: 17291015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Self-assembled monolayers as model systems to study the relation between biocompatibity and surface chemistry of biomaterials].
    Luo X; Qiu Q; Luo J; Wang L; Zhang A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Jun; 24(3):697-700. PubMed ID: 17713292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cells, growth factors and bioactive surface properties in a mechanobiological model of implant healing.
    Guérin G; Ambard D; Swider P
    J Biomech; 2009 Nov; 42(15):2555-61. PubMed ID: 19665713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.