BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 17443807)

  • 21. Pharmacological characterization of ionic currents that regulate high-frequency spontaneous activity of electromotor neurons in the weakly electric fish, Apteronotus leptorhynchus.
    Smith GT
    J Neurobiol; 2006 Jan; 66(1):1-18. PubMed ID: 16187302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of 17alpha-methyltestosterone on sexually dimorphic characters in the weakly discharging electric fish, Brienomyrus niger (Günther, 1866) (Mormyridae): electric organ discharge, ventral body wall indentation, and anal-Fin ray bone expansion.
    Herfeld S; Moller P
    Horm Behav; 1998 Dec; 34(3):303-19. PubMed ID: 9878279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular mechanisms of developmental and sex differences in the rapid hormonal modulation of a social communication signal.
    Markham MR; Stoddard PK
    Horm Behav; 2013 Apr; 63(4):586-97. PubMed ID: 23434622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrocyte physiology: 50 years later.
    Markham MR
    J Exp Biol; 2013 Jul; 216(Pt 13):2451-8. PubMed ID: 23761470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hormonal and behavioral correlates of morphological variation in an Amazonian electric fish (Sternarchogiton nattereri: Apteronotidae).
    Cox Fernandes C; Smith GT; Podos J; Nogueira A; Inoue L; Akama A; Ho WW; Alves-Gomes J
    Horm Behav; 2010 Sep; 58(4):660-8. PubMed ID: 20561524
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genes linked to species diversity in a sexually dimorphic communication signal in electric fish.
    Smith GT; Proffitt MR; Smith AR; Rusch DB
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Jan; 204(1):93-112. PubMed ID: 29058069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chronic androgen treatment increases action potential duration in the electric organ of Sternopygus.
    Mills A; Zakon HH
    J Neurosci; 1991 Aug; 11(8):2349-61. PubMed ID: 1869919
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrastructural features and hormone-dependent sex differences of mormyrid electric organs.
    Bass AH; Denizot JP; Marchaterre MA
    J Comp Neurol; 1986 Dec; 254(4):511-28. PubMed ID: 3805360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rat GnRH neurons exhibit large conductance voltage- and Ca2+-Activated K+ (BK) currents and express BK channel mRNAs.
    Hiraizumi Y; Nishimura I; Ishii H; Tanaka N; Takeshita T; Sakuma Y; Kato M
    J Physiol Sci; 2008 Feb; 58(1):21-9. PubMed ID: 18177544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution of Kv1-like potassium channels in the electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus.
    Smith GT; Unguez GA; Weber CM
    J Neurobiol; 2006 Aug; 66(9):1011-31. PubMed ID: 16779822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A temporal analysis of testosterone-induced changes in electric organs and electric organ discharges of mormyrid fishes.
    Freedman EG; Olyarchuk J; Marchaterre MA; Bass AH
    J Neurobiol; 1989 Oct; 20(7):619-34. PubMed ID: 2794996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation and modulation of electric waveforms in gymnotiform electric fish.
    Stoddard PK; Zakon HH; Markham MR; McAnelly L
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jun; 192(6):613-24. PubMed ID: 16437223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence of post-transcriptional regulation in the maintenance of a partial muscle phenotype by electrogenic cells of S. macrurus.
    Cuellar H; Kim JA; Unguez GA
    FASEB J; 2006 Dec; 20(14):2540. PubMed ID: 17077280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bromodeoxyuridine labeling reveals a class of satellite-like cells within the electric organ.
    Patterson JM; Zakon HH
    J Neurobiol; 1993 May; 24(5):660-74. PubMed ID: 7686964
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hormonal modulation of communication signals in electric fish.
    Zakon HH
    Dev Neurosci; 1996; 18(1-2):115-23. PubMed ID: 8840090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression and localization of Kv1 potassium channels in rat dorsal and ventral spinal roots.
    Utsunomiya I; Yoshihashi E; Tanabe S; Nakatani Y; Ikejima H; Miyatake T; Hoshi K; Taguchi K
    Exp Neurol; 2008 Mar; 210(1):51-8. PubMed ID: 18053989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deregulation of 2 potassium channels in pancreas adenocarcinomas: implication of KV1.3 gene promoter methylation.
    Brevet M; Fucks D; Chatelain D; Regimbeau JM; Delcenserie R; Sevestre H; Ouadid-Ahidouch H
    Pancreas; 2009 Aug; 38(6):649-54. PubMed ID: 19465885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estrogen modifies an electrocommunication signal by altering the electrocyte sodium current in an electric fish, Sternopygus.
    Dunlap KD; McAnelly ML; Zakon HH
    J Neurosci; 1997 Apr; 17(8):2869-75. PubMed ID: 9092608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A hormone-sensitive communication system in an electric fish.
    Bass AH
    J Neurobiol; 1986 May; 17(3):131-55. PubMed ID: 3519861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish, Apteronotus leptorhynchus.
    Hupé GJ; Lewis JE; Benda J
    J Physiol Paris; 2008; 102(4-6):164-72. PubMed ID: 18984046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.