BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 17444498)

  • 1. Ultrastructure of primary afferent terminals and synapses in the rat nucleus of the solitary tract: comparison among the greater superficial petrosal, chorda tympani, and glossopharyngeal nerves.
    May OL; Erisir A; Hill DL
    J Comp Neurol; 2007 Jun; 502(6):1066-78. PubMed ID: 17444498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic characteristics of rostral nucleus of the solitary tract neurons with input from the chorda tympani and glossopharyngeal nerves.
    Wang M; Bradley RM
    Brain Res; 2010 Apr; 1328():71-8. PubMed ID: 20214892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gustatory terminal field organization and developmental plasticity in the nucleus of the solitary tract revealed through triple-fluorescence labeling.
    May OL; Hill DL
    J Comp Neurol; 2006 Aug; 497(4):658-69. PubMed ID: 16739199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifications of gustatory nerve synapses onto nucleus of the solitary tract neurons induced by dietary sodium-restriction during development.
    May OL; Erisir A; Hill DL
    J Comp Neurol; 2008 Jun; 508(4):529-41. PubMed ID: 18366062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regenerative Failure Following Rat Neonatal Chorda Tympani Transection is Associated with Geniculate Ganglion Cell Loss and Terminal Field Plasticity in the Nucleus of the Solitary Tract.
    Martin LJ; Lane AH; Samson KK; Sollars SI
    Neuroscience; 2019 Mar; 402():66-77. PubMed ID: 30684590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of extracellular acetylcholinesterase with gustatory nerve terminal fibers in the nucleus of the solitary tract.
    Barry MA; Haglund S; Savoy LD
    Brain Res; 2001 Dec; 921(1-2):12-20. PubMed ID: 11720707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A survey of oral cavity afferents to the rat nucleus tractus solitarii.
    Corson J; Aldridge A; Wilmoth K; Erisir A
    J Comp Neurol; 2012 Feb; 520(3):495-527. PubMed ID: 21800298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine structural survey of the intermediate subnucleus of the nucleus tractus solitarii and its glossopharyngeal afferent terminals.
    Hayakawa T; Maeda S; Tanaka K; Seki M
    Anat Embryol (Berl); 2005 Oct; 210(3):235-44. PubMed ID: 16170540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chorda tympani nerve terminal field maturation and maintenance is severely altered following changes to gustatory nerve input to the nucleus of the solitary tract.
    Corson SL; Hill DL
    J Neurosci; 2011 May; 31(21):7591-603. PubMed ID: 21613473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central connectivity of the chorda tympani afferent terminals in the rat rostral nucleus of the solitary tract.
    Park SK; Lee DS; Bae JY; Bae YC
    Brain Struct Funct; 2016 Mar; 221(2):1125-37. PubMed ID: 25503820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptology of the direct projections from the nucleus of the solitary tract to pharyngeal motoneurons in the nucleus ambiguus of the rat.
    Hayakawa T; Zheng JQ; Seki M; Yajima Y
    J Comp Neurol; 1998 Apr; 393(3):391-401. PubMed ID: 9548557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monosynaptic convergence of chorda tympani and glossopharyngeal afferents onto ascending relay neurons in the nucleus of the solitary tract: a high-resolution confocal and correlative electron microscopy approach.
    Corson JA; Erisir A
    J Comp Neurol; 2013 Sep; 521(13):2907-26. PubMed ID: 23640852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic relationships between the chorda tympani and tyrosine hydroxylase-immunoreactive dendritic processes in the gustatory zone of the nucleus of the solitary tract in the hamster.
    Davis BJ
    J Comp Neurol; 1998 Mar; 392(1):78-91. PubMed ID: 9482234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo recordings from rat geniculate ganglia: taste response properties of individual greater superficial petrosal and chorda tympani neurones.
    Sollars SI; Hill DL
    J Physiol; 2005 May; 564(Pt 3):877-93. PubMed ID: 15746166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern differentiation of excitatory and inhibitory synaptic inputs on distinct neuronal types in the rat caudal nucleus of the tractus solitarius.
    Yoshioka M; Okada T; Inoue K; Kawai Y
    Neurosci Res; 2006 Jul; 55(3):300-15. PubMed ID: 16716422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcellular distributions of adenosine A1 and A2A receptors in the rat dorsomedial nucleus of the solitary tract at the level of the area postrema.
    Pickel VM; Chan J; Linden J; Rosin DL
    Synapse; 2006 Dec; 60(7):496-509. PubMed ID: 16952160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gustatory innervation in the rabbit: central distribution of sensory and motor components of the chorda tympani, glossopharyngeal, and superior laryngeal nerves.
    Hanamori T; Smith DV
    J Comp Neurol; 1989 Apr; 282(1):1-14. PubMed ID: 2708588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic connection from cortical area V4 to V2 in macaque monkey.
    Anderson JC; Martin KA
    J Comp Neurol; 2006 Apr; 495(6):709-21. PubMed ID: 16506191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered taste responses in adult NST after neonatal chorda tympani denervation.
    Dinkins ME; Travers SP
    J Neurophysiol; 1999 Nov; 82(5):2565-78. PubMed ID: 10561427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural evidence for selective noradrenergic innervation of CNS vagal projections to the fundus of the rat.
    Pearson RJ; Gatti PJ; Sahibzada N; Massari VJ; Gillis RA
    Auton Neurosci; 2007 Oct; 136(1-2):31-42. PubMed ID: 17572158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.