BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 17444608)

  • 1. Fluorescent fructose derivatives for imaging breast cancer cells.
    Levi J; Cheng Z; Gheysens O; Patel M; Chan CT; Wang Y; Namavari M; Gambhir SS
    Bioconjug Chem; 2007; 18(3):628-34. PubMed ID: 17444608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiopharmacological evaluation of 6-deoxy-6-[18F]fluoro-D-fructose as a radiotracer for PET imaging of GLUT5 in breast cancer.
    Wuest M; Trayner BJ; Grant TN; Jans HS; Mercer JR; Murray D; West FG; McEwan AJ; Wuest F; Cheeseman CI
    Nucl Med Biol; 2011 May; 38(4):461-75. PubMed ID: 21531283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New fluorinated fructose analogs as selective probes of the hexose transporter protein GLUT5.
    Soueidan OM; Trayner BJ; Grant TN; Henderson JR; Wuest F; West FG; Cheeseman CI
    Org Biomol Chem; 2015 Jun; 13(23):6511-21. PubMed ID: 25975431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and function of hexose transporters GLUT1, GLUT2, and GLUT5 in breast cancer-effects of hypoxia.
    Hamann I; Krys D; Glubrecht D; Bouvet V; Marshall A; Vos L; Mackey JR; Wuest M; Wuest F
    FASEB J; 2018 Sep; 32(9):5104-5118. PubMed ID: 29913554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent THF-based fructose analogue exhibits fructose-dependent uptake.
    Tanasova M; Plutschack M; Muroski ME; Sturla SJ; Strouse GF; McQuade DT
    Chembiochem; 2013 Jul; 14(10):1263-70. PubMed ID: 23784717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of 6-deoxy-6-fluoro-D-fructose as a potential compound for imaging breast cancer with PET.
    Trayner BJ; Grant TN; West FG; Cheeseman CI
    Bioorg Med Chem; 2009 Aug; 17(15):5488-95. PubMed ID: 19586773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of the fructose transporter GLUT5 in human breast cancer.
    Zamora-León SP; Golde DW; Concha II; Rivas CI; Delgado-López F; Baselga J; Nualart F; Vera JC
    Proc Natl Acad Sci U S A; 1996 Mar; 93(5):1847-52. PubMed ID: 8700847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Uptake of 2-NBDG by human breast cancer cells in vitro].
    Hu H; Shan XH; Zhu W; Qian H; Xu WR; Wang YF
    Zhonghua Zhong Liu Za Zhi; 2010 Jul; 32(7):507-10. PubMed ID: 21029693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of cell proliferation in human breast tumor cells by antisense oligonucleotides against facilitative glucose transporter 5.
    Chan KK; Chan JY; Chung KK; Fung KP
    J Cell Biochem; 2004 Dec; 93(6):1134-42. PubMed ID: 15449313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fructose-coated nanoparticles: a promising drug nanocarrier for triple-negative breast cancer therapy.
    Zhao J; Babiuch K; Lu H; Dag A; Gottschaldt M; Stenzel MH
    Chem Commun (Camb); 2014 Dec; 50(100):15928-31. PubMed ID: 25382088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Golgi staining by two fluorescent ceramide analogues in cultured fibroblasts requires metabolism.
    Pütz U; Schwarzmann G
    Eur J Cell Biol; 1995 Oct; 68(2):113-21. PubMed ID: 8575458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fructose uptake in rat adipocytes: GLUT5 expression and the effects of streptozotocin-induced diabetes.
    Hajduch E; Darakhshan F; Hundal HS
    Diabetologia; 1998 Jul; 41(7):821-8. PubMed ID: 9686924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of essential amino acids for glucose transporter 5 (GLUT5)-mediated fructose transport.
    Ebert K; Ewers M; Bisha I; Sander S; Rasputniac T; Daniel H; Antes I; Witt H
    J Biol Chem; 2018 Feb; 293(6):2115-2124. PubMed ID: 29259131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of a specific inhibitor of human GLUT5 by virtual screening and in vitro transport evaluation.
    George Thompson AM; Ursu O; Babkin P; Iancu CV; Whang A; Oprea TI; Choe JY
    Sci Rep; 2016 Apr; 6():24240. PubMed ID: 27074918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a novel non-radioactive cell-based method for the screening of SGLT1 and SGLT2 inhibitors using 1-NBDG.
    Chang HC; Yang SF; Huang CC; Lin TS; Liang PH; Lin CJ; Hsu LC
    Mol Biosyst; 2013 Aug; 9(8):2010-20. PubMed ID: 23657801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting of GLUT5 for Transporter-Mediated Drug-Delivery Is Contingent upon Substrate Hydrophilicity.
    Nahrjou N; Ghosh A; Tanasova M
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34064801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent Hexose Conjugates Establish Stringent Stereochemical Requirement by GLUT5 for Recognition and Transport of Monosaccharides.
    Soueidan OM; Scully TW; Kaur J; Panigrahi R; Belovodskiy A; Do V; Matier CD; Lemieux MJ; Wuest F; Cheeseman C; West FG
    ACS Chem Biol; 2017 Apr; 12(4):1087-1094. PubMed ID: 28205432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and evaluation of fructose analogues as inhibitors of the D-fructose transporter GLUT5.
    Tatibouët A; Yang J; Morin C; Holman GD
    Bioorg Med Chem; 2000 Jul; 8(7):1825-33. PubMed ID: 10976531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines.
    Millon SR; Ostrander JH; Brown JQ; Raheja A; Seewaldt VL; Ramanujam N
    Breast Cancer Res Treat; 2011 Feb; 126(1):55-62. PubMed ID: 20390344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of rat GLUT5 and functional analysis of chimeric proteins of GLUT1 glucose transporter and GLUT5 fructose transporter.
    Inukai K; Katagiri H; Takata K; Asano T; Anai M; Ishihara H; Nakazaki M; Kikuchi M; Yazaki Y; Oka Y
    Endocrinology; 1995 Nov; 136(11):4850-7. PubMed ID: 7588216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.