These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
578 related articles for article (PubMed ID: 17444615)
1. Enhancing Raman tweezers by phase-sensitive detection. Rusciano G; De Luca AC; Sasso A; Pesce G Anal Chem; 2007 May; 79(10):3708-15. PubMed ID: 17444615 [TBL] [Abstract][Full Text] [Related]
2. Identification of biotic and abiotic particles by using a combination of optical tweezers and in situ Raman spectroscopy. Gessner R; Winter C; Rösch P; Schmitt M; Petry R; Kiefer W; Lankers M; Popp J Chemphyschem; 2004 Aug; 5(8):1159-70. PubMed ID: 15446738 [TBL] [Abstract][Full Text] [Related]
3. Parallel analysis of individual biological cells using multifocal laser tweezers Raman spectroscopy. Liu R; Taylor DS; Matthews DL; Chan JW Appl Spectrosc; 2010 Nov; 64(11):1308-10. PubMed ID: 21073802 [TBL] [Abstract][Full Text] [Related]
4. Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy. Chan JW; Esposito AP; Talley CE; Hollars CW; Lane SM; Huser T Anal Chem; 2004 Feb; 76(3):599-603. PubMed ID: 14750852 [TBL] [Abstract][Full Text] [Related]
5. [Study of Raman spectroscopy of optically trapped human red blood cell affected by direct current]. Yue L; Wang G; Fang L; Yao H; Yuan Z; Mo H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):404-8. PubMed ID: 17591270 [TBL] [Abstract][Full Text] [Related]
6. Raman tweezers and their application to the study of singly trapped eukaryotic cells. Snook RD; Harvey TJ; Correia Faria E; Gardner P Integr Biol (Camb); 2009 Jan; 1(1):43-52. PubMed ID: 20023790 [TBL] [Abstract][Full Text] [Related]
7. Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy. Xie C; Mace J; Dinno MA; Li YQ; Tang W; Newton RJ; Gemperline PJ Anal Chem; 2005 Jul; 77(14):4390-7. PubMed ID: 16013851 [TBL] [Abstract][Full Text] [Related]
8. Spatially resolved analysis of small particles by confocal Raman microscopy: depth profiling and optical trapping. Bridges TE; Houlne MP; Harris JM Anal Chem; 2004 Feb; 76(3):576-84. PubMed ID: 14750849 [TBL] [Abstract][Full Text] [Related]
9. Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra. Pan YL; Hill SC; Coleman M Opt Express; 2012 Feb; 20(5):5325-34. PubMed ID: 22418339 [TBL] [Abstract][Full Text] [Related]
10. [Laser tweezers Raman spectroscopy analysis of liver cancer tissue]. Wang YJ; Yao HL; Wang GW; Wang Y; Feng MF Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jul; 29(7):1881-3. PubMed ID: 19798963 [TBL] [Abstract][Full Text] [Related]
11. Ultralow frequency Stokes and anti-Stokes Raman spectroscopy of single living cells and microparticles using a hot rubidium vapor filter. Lin J; Li YQ Opt Lett; 2014 Jan; 39(1):108-10. PubMed ID: 24365834 [TBL] [Abstract][Full Text] [Related]
12. Optical design for laser tweezers Raman spectroscopy setups for increased sensitivity and flexible spatial detection. Dahlberg T; Andersson M Appl Opt; 2021 Jun; 60(16):4519-4523. PubMed ID: 34143005 [TBL] [Abstract][Full Text] [Related]
13. Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments. Dochow S; Krafft C; Neugebauer U; Bocklitz T; Henkel T; Mayer G; Albert J; Popp J Lab Chip; 2011 Apr; 11(8):1484-90. PubMed ID: 21340095 [TBL] [Abstract][Full Text] [Related]
14. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials. Serey X; Mandal S; Erickson D Nanotechnology; 2010 Jul; 21(30):305202. PubMed ID: 20603537 [TBL] [Abstract][Full Text] [Related]
15. New trends in telescopic remote Raman spectroscopic instrumentation. Sharma SK Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1008-22. PubMed ID: 17723317 [TBL] [Abstract][Full Text] [Related]
16. Multiple-trap laser tweezers Raman spectroscopy for simultaneous monitoring of the biological dynamics of multiple individual cells. Zhang P; Kong L; Setlow P; Li YQ Opt Lett; 2010 Oct; 35(20):3321-3. PubMed ID: 20967053 [TBL] [Abstract][Full Text] [Related]
17. Laser Tweezers Raman Microspectroscopy of Single Cells and Biological Particles. Navas-Moreno M; Chan JW Methods Mol Biol; 2018; 1745():219-257. PubMed ID: 29476472 [TBL] [Abstract][Full Text] [Related]
18. Laser trapping and Raman spectroscopy of single cellular organelles in the nanometer range. Ajito K; Torimitsu K Lab Chip; 2002 Feb; 2(1):11-4. PubMed ID: 15100852 [TBL] [Abstract][Full Text] [Related]
19. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars. Bazalgette Courrèges-Lacoste G; Ahlers B; Pérez FR Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1023-8. PubMed ID: 17466575 [TBL] [Abstract][Full Text] [Related]
20. The use of optical spectroscopy in combinatorial chemistry. Gremlich HU Biotechnol Bioeng; 1998-1999; 61(3):179-87. PubMed ID: 10397805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]