BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 17444662)

  • 1. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 1. Conventional (pH-Insensitive) surfactants.
    Goldsipe A; Blankschtein D
    Langmuir; 2007 May; 23(11):5942-52. PubMed ID: 17444662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 2. pH-sensitive surfactants.
    Goldsipe A; Blankschtein D
    Langmuir; 2007 May; 23(11):5953-62. PubMed ID: 17444663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular-thermodynamic theory of micellization of pH-sensitive surfactants.
    Goldsipe A; Blankschtein D
    Langmuir; 2006 Apr; 22(8):3547-59. PubMed ID: 16584226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Titration of mixed micelles containing a pH-sensitive surfactant and conventional (pH-Insensitive) surfactants: a regular solution theory modeling approach.
    Goldsipe A; Blankschtein D
    Langmuir; 2006 Nov; 22(24):9894-904. PubMed ID: 17106978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling counterion binding in ionic-nonionic and ionic-zwitterionic binary surfactant mixtures.
    Goldsipe A; Blankschtein D
    Langmuir; 2005 Oct; 21(22):9850-65. PubMed ID: 16229501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of conformational characteristics and micellar solution properties of fluorocarbon surfactants.
    Srinivasan V; Blankschtein D
    Langmuir; 2005 Feb; 21(4):1647-60. PubMed ID: 15697320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complementary use of simulations and molecular-thermodynamic theory to model micellization.
    Stephenson BC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 1. Theory.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1634-40. PubMed ID: 18198856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 2. Implementation.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1641-56. PubMed ID: 18198857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixed micelle formation among anionic gemini surfactant (212) and its monomer (SDMA) with conventional surfactants (C12E5 and C12E8) in brine solution at pH 11.
    Ghosh S; Chakraborty T
    J Phys Chem B; 2007 Jul; 111(28):8080-8. PubMed ID: 17583935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular-thermodynamic framework to predict the micellization behavior of mixtures of fluorocarbon-based and hydrocarbon-based surfactants.
    Iyer J; Blankschtein D
    J Phys Chem B; 2014 Mar; 118(9):2377-88. PubMed ID: 24512047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed Micellization of Dimeric (Gemini) Surfactants and Conventional Surfactants.
    Alargova RG; Kochijashky II; Sierra ML; Kwetkat K; Zana R
    J Colloid Interface Sci; 2001 Mar; 235(1):119-129. PubMed ID: 11237450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the hydrophobic effect. 1. A computer simulation-molecular-thermodynamic model for the self-assembly of hydrophobic and amphiphilic solutes in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1025-44. PubMed ID: 17266257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixed micelle formation and solubilization behavior toward polycyclic aromatic hydrocarbons of binary and ternary cationic-nonionic surfactant mixtures.
    Dar AA; Rather GM; Das AR
    J Phys Chem B; 2007 Mar; 111(12):3122-32. PubMed ID: 17388443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implicit-solvent models for micellization: nonionic surfactants and temperature-dependent properties.
    Jusufi A; Sanders S; Klein ML; Panagiotopoulos AZ
    J Phys Chem B; 2011 Feb; 115(5):990-1001. PubMed ID: 21218830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micelle-monomer equilibria in solutions of ionic surfactants and in ionic-nonionic mixtures: a generalized phase separation model.
    Danov KD; Kralchevsky PA; Ananthapadmanabhan KP
    Adv Colloid Interface Sci; 2014 Apr; 206():17-45. PubMed ID: 23558017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of micellization of aqueous solutions of binary mixtures of two anionic surfactants.
    Szymczyk K; JaƄczuk B
    Langmuir; 2009 Apr; 25(8):4377-83. PubMed ID: 19243148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the hydrophobic effect. 3. A computer simulation-molecular-thermodynamic model for the micellization of ionic and zwitterionic surfactants in aqueous solution.
    Stephenson BC; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1063-75. PubMed ID: 17266259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulation-molecular-thermodynamic framework to predict the micellization behavior of mixtures of surfactants: application to binary surfactant mixtures.
    Iyer J; Mendenhall JD; Blankschtein D
    J Phys Chem B; 2013 May; 117(21):6430-42. PubMed ID: 23634888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.