These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 17444746)

  • 21. Polymer capture by electro-osmotic flow of oppositely charged nanopores.
    Wong CT; Muthukumar M
    J Chem Phys; 2007 Apr; 126(16):164903. PubMed ID: 17477630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling environment for numerical simulation of applied electric fields on biological cells.
    Suzuki DO; Ramos A; Marques JL
    Electromagn Biol Med; 2007; 26(3):239-50. PubMed ID: 17886010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions.
    Ramírez P; Gómez V; Cervera J; Schiedt B; Mafé S
    J Chem Phys; 2007 May; 126(19):194703. PubMed ID: 17523824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation of ionic current through the nanopore in a double-layered semiconductor membrane.
    Nikolaev A; Gracheva ME
    Nanotechnology; 2011 Apr; 22(16):165202. PubMed ID: 21393823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical study of sequence-dependent nanopore unzipping of DNA.
    Bockelmann U; Viasnoff V
    Biophys J; 2008 Apr; 94(7):2716-24. PubMed ID: 18178661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulation study on the translocation of a partially charged polymer through a nanopore.
    Qian H; Sun LZ; Luo MB
    J Chem Phys; 2012 Jul; 137(3):034903. PubMed ID: 22830729
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cylindrical cell membranes in uniform applied electric fields: validation of a transport lattice method.
    Stewart DA; Gowrishankar TR; Smith KC; Weaver JC
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1643-53. PubMed ID: 16235650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electric-field-driven polymer entry into asymmetric nanoscale channels.
    Nikoofard N; Fazli H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021804. PubMed ID: 22463233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular dynamics simulation of a pressure-driven liquid transport process in a cylindrical nanopore using two self-adjusting plates.
    Huang C; Nandakumar K; Choi PY; Kostiuk LW
    J Chem Phys; 2006 Jun; 124(23):234701. PubMed ID: 16821935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control and reversal of the electrophoretic force on DNA in a charged nanopore.
    Luan B; Aksimentiev A
    J Phys Condens Matter; 2010 Nov; 22(45):454123. PubMed ID: 21339610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polymer brushes on periodically nanopatterned surfaces.
    Koutsioubas AG; Vanakaras AG
    Langmuir; 2008 Dec; 24(23):13717-22. PubMed ID: 18991415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specific features of defect structure and dynamics in the cylinder phase of block copolymers.
    Horvat A; Sevink GJ; Zvelindovsky AV; Krekhov A; Tsarkova L
    ACS Nano; 2008 Jun; 2(6):1143-52. PubMed ID: 19206332
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noise and bandwidth of current recordings from submicrometer pores and nanopores.
    Uram JD; Ke K; Mayer M
    ACS Nano; 2008 May; 2(5):857-72. PubMed ID: 19206482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation study on the translocation of diblock copolymer A(n)B(n) through interacting nanopores.
    Sun LZ; Cao WP; Luo MB
    Phys Chem Chem Phys; 2010 Oct; 12(40):13318-22. PubMed ID: 20838694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of entrance and exit effects on liquid transport through a cylindrical nanopore.
    Huang C; Choi PY; Nandakumar K; Kostiuk LW
    Phys Chem Chem Phys; 2008 Jan; 10(1):186-92. PubMed ID: 18075698
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Separation of long linear polymers in gel electrophoresis with alternating electric fields: a theoretical study using the necklace model.
    Terranova GR; Mártin HO; Aldao CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061801. PubMed ID: 23005118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The rate constant of polymer reversal inside a pore.
    Huang L; Makarov DE
    J Chem Phys; 2008 Mar; 128(11):114903. PubMed ID: 18361614
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics of polymer translocation through nanopores: theory meets experiment.
    Matysiak S; Montesi A; Pasquali M; Kolomeisky AB; Clementi C
    Phys Rev Lett; 2006 Mar; 96(11):118103. PubMed ID: 16605877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monte Carlo simulation on polymer translocation in crowded environment.
    Cao WP; Sun LZ; Wang C; Luo MB
    J Chem Phys; 2011 Nov; 135(17):174901. PubMed ID: 22070320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-assembly of conjugated polymers and ds-oligonucleotides directed fractal-like aggregates.
    Gan H; Li Y; Liu H; Wang S; Li C; Yuan M; Liu X; Wang C; Jiang L; Zhu D
    Biomacromolecules; 2007 May; 8(5):1723-9. PubMed ID: 17458934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.