BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 17444756)

  • 1. Spike-timing-dependent plasticity in balanced random networks.
    Morrison A; Aertsen A; Diesmann M
    Neural Comput; 2007 Jun; 19(6):1437-67. PubMed ID: 17444756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.
    Ocker GK; Litwin-Kumar A; Doiron B
    PLoS Comput Biol; 2015 Aug; 11(8):e1004458. PubMed ID: 26291697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General differential Hebbian learning: Capturing temporal relations between events in neural networks and the brain.
    Zappacosta S; Mannella F; Mirolli M; Baldassarre G
    PLoS Comput Biol; 2018 Aug; 14(8):e1006227. PubMed ID: 30153263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity.
    Nessler B; Pfeiffer M; Buesing L; Maass W
    PLoS Comput Biol; 2013 Apr; 9(4):e1003037. PubMed ID: 23633941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenomenological models of synaptic plasticity based on spike timing.
    Morrison A; Diesmann M; Gerstner W
    Biol Cybern; 2008 Jun; 98(6):459-78. PubMed ID: 18491160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of phase oscillator networks with synaptic weight and structural plasticity.
    Chauhan K; Khaledi-Nasab A; Neiman AB; Tass PA
    Sci Rep; 2022 Sep; 12(1):15003. PubMed ID: 36056151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A network of spiking neurons that can represent interval timing: mean field analysis.
    Gavornik JP; Shouval HZ
    J Comput Neurosci; 2011 Apr; 30(2):501-13. PubMed ID: 20830512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robust balancing mechanism for spiking neural networks.
    Politi A; Torcini A
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38639569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time Neural Connectivity Inference with Presynaptic Spike-driven Spike Timing-Dependent Plasticity.
    Kim D; Choi J; Cheon M; Jeong Y; Kim J; Kwak JY; Park JK; Lee S; Kim I; Park J
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoupling of interacting neuronal populations by time-shifted stimulation through spike-timing-dependent plasticity.
    Madadi Asl M; Valizadeh A; Tass PA
    PLoS Comput Biol; 2023 Feb; 19(2):e1010853. PubMed ID: 36724144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic reshaping of plastic neuronal networks by periodic multichannel stimulation with single-pulse and burst stimuli.
    Kromer JA; Tass PA
    PLoS Comput Biol; 2022 Nov; 18(11):e1010568. PubMed ID: 36327232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioplausible Unsupervised Delay Learning for Extracting Spatiotemporal Features in Spiking Neural Networks.
    Nadafian A; Ganjtabesh M
    Neural Comput; 2024 Jun; 36(7):1332-1352. PubMed ID: 38776969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copying and evolution of neuronal topology.
    Fernando C; Karishma KK; Szathmáry E
    PLoS One; 2008; 3(11):e3775. PubMed ID: 19020662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling Synchronization of Spiking Neuronal Networks by Harnessing Synaptic Plasticity.
    Schmalz J; Kumar G
    Front Comput Neurosci; 2019; 13():61. PubMed ID: 31551743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-Lasting Desynchronization Effects of Coordinated Reset Stimulation Improved by Random Jitters.
    Khaledi-Nasab A; Kromer JA; Tass PA
    Front Physiol; 2021; 12():719680. PubMed ID: 34630142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling of a Large-Scale Simulation of Synchronous Slow-Wave and Asynchronous Awake-Like Activity of a Cortical Model With Long-Range Interconnections.
    Pastorelli E; Capone C; Simula F; Sanchez-Vives MV; Del Giudice P; Mattia M; Paolucci PS
    Front Syst Neurosci; 2019; 13():33. PubMed ID: 31396058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complexities and uncertainties of neuronal network function.
    Parker D
    Philos Trans R Soc Lond B Biol Sci; 2006 Jan; 361(1465):81-99. PubMed ID: 16553310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of complex oscillatory dynamics in the neuronal networks with long activity time of inhibitory synapses.
    Khanjanianpak M; Azimi-Tafreshi N; Valizadeh A
    iScience; 2024 Apr; 27(4):109401. PubMed ID: 38532887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-dependent excitatory and inhibitory plasticity accounts for quick, stable and long-lasting memories in biological networks.
    Agnes EJ; Vogels TP
    Nat Neurosci; 2024 May; 27(5):964-974. PubMed ID: 38509348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A prefrontal network model operating near steady and oscillatory states links spike desynchronization and synaptic deficits in schizophrenia.
    Crowe DA; Willow A; Blackman RK; DeNicola AL; Chafee MV; Amirikian B
    Elife; 2024 Feb; 13():. PubMed ID: 38319151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.