These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Snake phospholipase A2 neurotoxins enter neurons, bind specifically to mitochondria, and open their transition pores. Rigoni M; Paoli M; Milanesi E; Caccin P; Rasola A; Bernardi P; Montecucco C J Biol Chem; 2008 Dec; 283(49):34013-20. PubMed ID: 18809685 [TBL] [Abstract][Full Text] [Related]
43. Identification of phospholipase A2 and neurotoxic activities in the venom of the New Guinean small-eyed snake (Micropechis ikaheka). Geh SL; Vincent A; Rang S; Abrahams T; Jacobson L; Lang B; Warrell D Toxicon; 1997 Jan; 35(1):101-9. PubMed ID: 9028013 [TBL] [Abstract][Full Text] [Related]
44. Comparison of total protein and phospholipase A(2) levels in individual coralsnake venoms. Kopper RA; Harper GR; Zimmerman S; Hook J Toxicon; 2013 Dec; 76():59-62. PubMed ID: 24060378 [TBL] [Abstract][Full Text] [Related]
45. Unlocking the secrets of banded coral snake (Calliophis intestinalis, Malaysia): A venom with proteome novelty, low toxicity and distinct antigenicity. Tan KY; Liew JL; Tan NH; Quah ESH; Ismail AK; Tan CH J Proteomics; 2019 Feb; 192():246-257. PubMed ID: 30243938 [TBL] [Abstract][Full Text] [Related]
46. New insights into the phylogeographic distribution of the 3FTx/PLA Sanz L; Quesada-Bernat S; Ramos T; Casais-E-Silva LL; Corrêa-Netto C; Silva-Haad JJ; Sasa M; Lomonte B; Calvete JJ J Proteomics; 2019 May; 200():90-101. PubMed ID: 30946991 [TBL] [Abstract][Full Text] [Related]
47. Search for a "toxic site" in snake venom phospholipases A2. Arriagada E; Cid H Arch Biol Med Exp; 1989 Jul; 22(2):97-105. PubMed ID: 2515808 [TBL] [Abstract][Full Text] [Related]
48. Chemical modification of arginine residues of Notechis scutatus scutatus notexin. Chang LS; Wu PF; Liou JC; Chiang-Lin WH; Yang CC Toxicon; 2004 Oct; 44(5):491-7. PubMed ID: 15450923 [TBL] [Abstract][Full Text] [Related]
49. The effect of snake venoms and their components on adrenomedullary cells: catecholamine efflux and cell damage. Zhang Y; Tu AT Neurotoxicology; 2002 Sep; 23(3):273-9. PubMed ID: 12387355 [TBL] [Abstract][Full Text] [Related]
50. Cortical F-actin, the exocytic mode, and neuropeptide release in mouse chromaffin cells is regulated by myristoylated alanine-rich C-kinase substrate and myosin II. Doreian BW; Fulop TG; Meklemburg RL; Smith CB Mol Biol Cell; 2009 Jul; 20(13):3142-54. PubMed ID: 19420137 [TBL] [Abstract][Full Text] [Related]
51. The F-actin cytoskeleton modulates slow secretory components rather than readily releasable vesicle pools in bovine chromaffin cells. Gil A; Rueda J; Viniegra S; Gutiérrez LM Neuroscience; 2000; 98(3):605-14. PubMed ID: 10869854 [TBL] [Abstract][Full Text] [Related]
52. Protein kinase C activation by phorbol esters induces chromaffin cell cortical filamentous actin disassembly and increases the initial rate of exocytosis in response to nicotinic receptor stimulation. Vitale ML; Rodríguez Del Castillo A; Trifaró JM Neuroscience; 1992 Nov; 51(2):463-74. PubMed ID: 1281530 [TBL] [Abstract][Full Text] [Related]
53. Presynaptic toxicity of the histidine-modified, phospholipase A2-inactive, beta-bungarotoxin, crotoxin and notexin. Chang CC; Su MJ Toxicon; 1982; 20(5):895-905. PubMed ID: 6129723 [TBL] [Abstract][Full Text] [Related]
54. Phospholipid hydrolysis and loss of membrane integrity following treatment of rat brain synaptosomes with beta-bungarotoxin, notexin, and Naja naja atra and Naja nigricollis phospholipase A2. Yates SL; Burns M; Condrea E; Ghassemi A; Shina R; Rosenberg P Toxicon; 1990; 28(8):939-51. PubMed ID: 2080518 [TBL] [Abstract][Full Text] [Related]
55. Different evolution of phospholipase A2 neurotoxins (beta-neurotoxins) from Elapidae and Viperidae snakes. Bon C; Choumet V; Delot E; Faure G; Robbe-Vincent A; Saliou B Ann N Y Acad Sci; 1994 Mar; 710():142-8. PubMed ID: 8154743 [No Abstract] [Full Text] [Related]
56. Snake venom phospholipases A2. A fluorescence study of their binding to phospholipid vesicles correlation with their anticoagulant activities. Prigent-Dachary J; Boffa MC; Boisseau MR; Dufourcq J J Biol Chem; 1980 Aug; 255(16):7734-9. PubMed ID: 7400142 [TBL] [Abstract][Full Text] [Related]
57. Comparison of a relatively toxic phospholipase A2 from Naja nigricollis snake venom with that of a relatively non-toxic phospholipase A2 from Hemachatus haemachatus snake venom--I. Enzymatic activity on free and membrane bound substrates. Condrea E; Yang CC; Rosenberg P Biochem Pharmacol; 1980 Jun; 29(11):1555-63. PubMed ID: 7396986 [No Abstract] [Full Text] [Related]
58. Homologous posttranscriptional regulation of insulin-like growth factor-I receptor level via glycogen synthase kinase-3beta and mammalian target of rapamycin in adrenal chromaffin cells: effect on tau phosphorylation. Nemoto T; Satoh S; Maruta T; Kanai T; Yoshikawa N; Miyazaki S; Yanagita T; Wada A Neuropharmacology; 2010 Jun; 58(7):1097-108. PubMed ID: 20144629 [TBL] [Abstract][Full Text] [Related]
59. Role of an aprotinin-sensitive protease in protein kinase Calpha-mediated activation of cytosolic phospholipase A2 by calcium ionophore (A23187) in pulmonary endothelium. Chakraborti S; Michael JR; Chakraborti T Cell Signal; 2004 Jun; 16(6):751-62. PubMed ID: 15093616 [TBL] [Abstract][Full Text] [Related]
60. Lithium inhibits function of voltage-dependent sodium channels and catecholamine secretion independent of glycogen synthase kinase-3 in adrenal chromaffin cells. Yanagita T; Maruta T; Uezono Y; Satoh S; Yoshikawa N; Nemoto T; Kobayashi H; Wada A Neuropharmacology; 2007 Dec; 53(7):881-9. PubMed ID: 17950380 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]