BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 17445511)

  • 1. Meteorological input data requirements to predict cross-pollination of GMO maize with Lagrangian approaches.
    Lipsius K; Wilhelm R; Richter O; Schmalstieg KJ; Schiemann J
    Environ Biosafety Res; 2006; 5(3):151-68. PubMed ID: 17445511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially explicit modelling of transgenic maize pollen dispersal and cross-pollination.
    Loos C; Seppelt R; Meier-Bethke S; Schiemann J; Richter O
    J Theor Biol; 2003 Nov; 225(2):241-55. PubMed ID: 14575658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional prediction of maize pollen dispersal and cross-pollination, and the effects of windbreaks.
    Ushiyama T; Du M; Inoue S; Shibaike H; Yonemura S; Kawashima S; Amano K
    Environ Biosafety Res; 2009; 8(4):183-202. PubMed ID: 20883658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Literature review of the dispersal of transgenes from genetically modified maize].
    Ricroch A; Bergé JB; Messéan A
    C R Biol; 2009 Oct; 332(10):861-75. PubMed ID: 19819407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pollen-mediated gene flow in maize in real situations of coexistence.
    Messeguer J; Peñas G; Ballester J; Bas M; Serra J; Salvia J; Palaudelmàs M; Melé E
    Plant Biotechnol J; 2006 Nov; 4(6):633-45. PubMed ID: 17309734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of pollen dispersal and cross pollination using transgenic grapevine plants.
    Harst M; Cobanov BA; Hausmann L; Eibach R; Töpfer R
    Environ Biosafety Res; 2009; 8(2):87-99. PubMed ID: 19833076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-fertilization between genetically modified and non-genetically modified maize crops in Uruguay.
    Galeano P; Debat CM; Ruibal F; Fraguas LF; Galván GA
    Environ Biosafety Res; 2010; 9(3):147-54. PubMed ID: 21975255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Air-mediated pollen flow from genetically modified to conventional crops.
    Kuparinen A; Schurr F; Tackenberg O; O'Hara RB
    Ecol Appl; 2007 Mar; 17(2):431-40. PubMed ID: 17489250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of wind direction on cross-pollination in wind-pollinated GM crops.
    Hoyle M; Cresswell JE
    Ecol Appl; 2007 Jun; 17(4):1234-43. PubMed ID: 17555231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sampling and modeling for the quantification of adventitious genetically modified presence in maize.
    Allnutt TR; Dwyer M; McMillan J; Henry C; Langrell S
    J Agric Food Chem; 2008 May; 56(9):3232-7. PubMed ID: 18419127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling gene flow distribution within conventional fields and development of a simplified sampling method to quantify adventitious GM contents in maize.
    Melé E; Nadal A; Messeguer J; Melé-Messeguer M; Palaudelmàs M; Peñas G; Piferrer X; Capellades G; Serra J; Pla M
    Sci Rep; 2015 Nov; 5():17106. PubMed ID: 26596213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pollen-Mediated Gene Flow in Maize: Implications for Isolation Requirements and Coexistence in Mexico, the Center of Origin of Maize.
    Baltazar BM; Castro Espinoza L; Espinoza Banda A; de la Fuente Martínez JM; Garzón Tiznado JA; González García J; Gutiérrez MA; Guzmán Rodríguez JL; Heredia Díaz O; Horak MJ; Madueño Martínez JI; Schapaugh AW; Stojšin D; Uribe Montes HR; Zavala García F
    PLoS One; 2015; 10(7):e0131549. PubMed ID: 26162097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling and estimating pollen movement in oilseed rape (Brassica napus) at the landscape scale using genetic markers.
    Devaux C; Lavigne C; Austerlitz F; Klein EK
    Mol Ecol; 2007 Feb; 16(3):487-99. PubMed ID: 17257108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High diversity of oilseed rape pollen clouds over an agro-ecosystem indicates long-distance dispersal.
    Devaux C; Lavigne C; Falentin-Guyomarc'H H; Vautrin S; Lecomte J; Klein EK
    Mol Ecol; 2005 Jul; 14(8):2269-80. PubMed ID: 15969713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effectiveness of different sampling schemes in predicting adventitious genetically modified maize content in a smallholder farming system.
    Jhong YS; Lin WS; Yiu TJ; Su YC; Kuo BJ
    GM Crops Food; 2021 Jan; 12(1):212-223. PubMed ID: 33300426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the influence of field size on maize gene flow using SSR analysis.
    Palaudelmàs M; Melé E; Monfort A; Serra J; Salvia J; Messeguer J
    Transgenic Res; 2012 Jun; 21(3):471-83. PubMed ID: 21898271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene flow from GM glyphosate-tolerant to conventional soybeans under field conditions in Japan.
    Yoshimura Y; Matsuo K; Yasuda K
    Environ Biosafety Res; 2006; 5(3):169-73. PubMed ID: 17445512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The co-existence between transgenic and non-transgenic maize in the European Union: a focus on pollen flow and cross-fertilization.
    Devos Y; Reheul D; De Schrijver A
    Environ Biosafety Res; 2005; 4(2):71-87. PubMed ID: 16402663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene flow from transgenic to nontransgenic soybean plants in the Cerrado region of Brazil.
    Abud S; de Souza PI; Vianna GR; Leonardecz E; Moreira CT; Faleiro FG; Júnior JN; Monteiro PM; Rech EL; Aragão FJ
    Genet Mol Res; 2007 Jun; 6(2):445-52. PubMed ID: 17952868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.