These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17445691)

  • 1. Polarographic assays of respiratory chain complex activity.
    Villani G; Attardi G
    Methods Cell Biol; 2007; 80():121-33. PubMed ID: 17445691
    [No Abstract]   [Full Text] [Related]  

  • 2. Biochemical assays of respiratory chain complex activity.
    Kirby DM; Thorburn DR; Turnbull DM; Taylor RW
    Methods Cell Biol; 2007; 80():93-119. PubMed ID: 17445690
    [No Abstract]   [Full Text] [Related]  

  • 3. In vivo measurements of respiration control by cytochrome c oxidase and in situ analysis of oxidative phosphorylation.
    Villani G; Attardi G
    Methods Cell Biol; 2001; 65():119-31. PubMed ID: 11381589
    [No Abstract]   [Full Text] [Related]  

  • 4. Respiratory mutations lead to different pleiotropic effects on OXPHOS complexes in yeast and in human cells.
    Marsy S; Frachon P; Dujardin G; Lombès A; Lemaire C
    FEBS Lett; 2008 Oct; 582(23-24):3489-93. PubMed ID: 18804471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and functional analysis of mitochondria from the nematode Caenorhabditis elegans.
    Grad LI; Sayles LC; Lemire BD
    Methods Mol Biol; 2007; 372():51-66. PubMed ID: 18314717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy breathing: energy conversion by mitochondrial respiratory supercomplexes.
    Schon EA; Dencher NA
    Cell Metab; 2009 Jan; 9(1):1-3. PubMed ID: 19117538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical analyses of the electron transport chain complexes by spectrophotometry.
    Frazier AE; Thorburn DR
    Methods Mol Biol; 2012; 837():49-62. PubMed ID: 22215540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo and in organello assessment of OXPHOS activities.
    Barrientos A
    Methods; 2002 Apr; 26(4):307-16. PubMed ID: 12054921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are Escherichia coli OXPHOS complexes concentrated in specialized zones within the plasma membrane?
    Lenn T; Leake MC; Mullineaux CW
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):1032-6. PubMed ID: 18793184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistance to kynurenic acid of the NMDA receptor-dependent toxicity of 3-nitropropionic acid and cyanide in cerebellar granule neurons.
    Fatokun AA; Smith RA; Stone TW
    Brain Res; 2008 Jun; 1215():200-7. PubMed ID: 18486115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium-induced enhancement of mitochondrial oxidative phosphorylation in human brain tissue.
    Maurer IC; Schippel P; Volz HP
    Bipolar Disord; 2009 Aug; 11(5):515-22. PubMed ID: 19624390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of brain mitochondrial Lon protease by peroxynitrite precedes electron transport chain dysfunction.
    Stanyer L; Jorgensen W; Hori O; Clark JB; Heales SJ
    Neurochem Int; 2008 Sep; 53(3-4):95-101. PubMed ID: 18598728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional assays in high-resolution clear native gels to quantify mitochondrial complexes in human biopsies and cell lines.
    Wittig I; Carrozzo R; Santorelli FM; Schägger H
    Electrophoresis; 2007 Nov; 28(21):3811-20. PubMed ID: 17960833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using polarography and spectrophotometric enzyme assays.
    Barrientos A; Fontanesi F; Díaz F
    Curr Protoc Hum Genet; 2009 Oct; Chapter 19():Unit19.3. PubMed ID: 19806590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Analysis of Mitochondrial Oxygen Consumption.
    Hynes J; Swiss RL; Will Y
    Methods Mol Biol; 2018; 1782():71-87. PubMed ID: 29850994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Respiration with Clark-Type Electrode in Isolated Mitochondria and Permeabilized Animal Cells.
    Silva AM; Oliveira PJ
    Methods Mol Biol; 2018; 1782():7-29. PubMed ID: 29850992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative detection of the expression of mitochondrial cytochrome c oxidase subunits mRNA in the cerebral cortex after experimental traumatic brain injury.
    Dai W; Cheng HL; Huang RQ; Zhuang Z; Shi JX
    Brain Res; 2009 Jan; 1251():287-95. PubMed ID: 19063873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing Mitochondrial Bioenergetics by Respirometry in Cells or Isolated Organelles.
    Vial G; Guigas B
    Methods Mol Biol; 2018; 1732():273-287. PubMed ID: 29480482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of functional assembly in mitochondrial supercomplexes: a new insight into impaired mitochondrial function?
    García-Palmer FJ
    Cardiovasc Res; 2008 Oct; 80(1):3-4. PubMed ID: 18687704
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.