BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17445774)

  • 41. [Preparation, isolation, and study of mutant forms of ribosomal protein L7/L12].
    Todorova RT
    Bioorg Khim; 1993 Mar; 19(3):286-92. PubMed ID: 8489529
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of methylation and acetylation in E. coli ribosomal proteins.
    Arnold RJ; Reilly JP
    Methods Mol Biol; 2002; 194():205-10. PubMed ID: 12029835
    [No Abstract]   [Full Text] [Related]  

  • 43. Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey.
    Falb M; Aivaliotis M; Garcia-Rizo C; Bisle B; Tebbe A; Klein C; Konstantinidis K; Siedler F; Pfeiffer F; Oesterhelt D
    J Mol Biol; 2006 Oct; 362(5):915-24. PubMed ID: 16950390
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Arylamine N-acetyltransferase aggregation and constitutive ubiquitylation.
    Liu F; Zhang N; Zhou X; Hanna PE; Wagner CR; Koepp DM; Walters KJ
    J Mol Biol; 2006 Aug; 361(3):482-92. PubMed ID: 16857211
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of S-thiolation on secreted proteins from E. coli by mass spectrometry.
    Liu P; Tarnowski MA; O'Mara BW; Wu W; Zhang H; Tamura JK; Ackerman MS; Tao L; Grace MJ; Russell RJ
    Rapid Commun Mass Spectrom; 2009 Oct; 23(20):3343-9. PubMed ID: 19760645
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Protein Acetyltransferase PatZ from Escherichia coli Is Regulated by Autoacetylation-induced Oligomerization.
    de Diego Puente T; Gallego-Jara J; Castaño-Cerezo S; Bernal Sánchez V; Fernández Espín V; García de la Torre J; Manjón Rubio A; Cánovas Díaz M
    J Biol Chem; 2015 Sep; 290(38):23077-93. PubMed ID: 26251518
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced refoldability and thermoactivity of fluorinated phosphotriesterase.
    Baker PJ; Montclare JK
    Chembiochem; 2011 Aug; 12(12):1845-8. PubMed ID: 21710682
    [No Abstract]   [Full Text] [Related]  

  • 48. N-Terminal protein modifications in an insect cell-free protein synthesis system and their identification by mass spectrometry.
    Suzuki T; Ito M; Ezure T; Shikata M; Ando E; Utsumi T; Tsunasawa S; Nishimura O
    Proteomics; 2006 Aug; 6(16):4486-95. PubMed ID: 16835852
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Acetoxy drug: protein transacetylase of buffalo liver-characterization and mass spectrometry of the acetylated protein product.
    Kohli E; Gaspari M; Raj HG; Parmar VS; Sharma SK; van der Greef J; Kumari R; Gupta G; Seema ; Khurana P; Tyagi YK; Watterson AC; Olsen CE
    Biochim Biophys Acta; 2004 Apr; 1698(1):55-66. PubMed ID: 15063315
    [TBL] [Abstract][Full Text] [Related]  

  • 50. N-terminal acetylation of ectopic recombinant proteins in Escherichia coli.
    Charbaut E; Redeker V; Rossier J; Sobel A
    FEBS Lett; 2002 Oct; 529(2-3):341-5. PubMed ID: 12372625
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sequence specificity and efficiency of protein N-terminal methionine elimination in wheat-embryo cell-free system.
    Kanno T; Kitano M; Kato R; Omori A; Endo Y; Tozawa Y
    Protein Expr Purif; 2007 Mar; 52(1):59-65. PubMed ID: 17123829
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Involvement of Gly 311 residue on substrate discrimination, pH and temperature dependency of recombinant Staphylococcus xylosus lipase: a study with emulsified substrate.
    Mosbah H; Sayari A; Horchani H; Gargouri Y
    Protein Expr Purif; 2007 Sep; 55(1):31-9. PubMed ID: 17521919
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tools for metabolic engineering in Escherichia coli: inactivation of panD by a point mutation.
    Kennedy J; Kealey JT
    Anal Biochem; 2004 Apr; 327(1):91-6. PubMed ID: 15033515
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of a Trypanosoma cruzi acetyltransferase: cellular location, activity and structure.
    Ochaya S; Respuela P; Simonsson M; Saraswathi A; Branche C; Lee J; Búa J; Nilsson D; Aslund L; Bontempi EJ; Andersson B
    Mol Biochem Parasitol; 2007 Apr; 152(2):123-31. PubMed ID: 17270289
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of potential substrate proteins for the periplasmic Escherichia coli chaperone Skp.
    Jarchow S; Lück C; Görg A; Skerra A
    Proteomics; 2008 Dec; 8(23-24):4987-94. PubMed ID: 19003857
    [TBL] [Abstract][Full Text] [Related]  

  • 56. ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway.
    Schmidt R; Zahn R; Bukau B; Mogk A
    Mol Microbiol; 2009 Apr; 72(2):506-17. PubMed ID: 19317833
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis.
    Lassila JK; Keeffe JR; Kast P; Mayo SL
    Biochemistry; 2007 Jun; 46(23):6883-91. PubMed ID: 17506527
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Leishmania major thialysine Nepsilon-acetyltransferase: identification of amino acid residues crucial for substrate binding.
    Lüersen K
    FEBS Lett; 2005 Oct; 579(24):5347-52. PubMed ID: 16194533
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Contribution of Ser463 residue to the enzymatic and autoprocessing activities of Escherichia coli gamma-glutamyltranspeptidase.
    Hsu WH; Ong PL; Chen SC; Lin LL
    Indian J Biochem Biophys; 2009 Aug; 46(4):281-8. PubMed ID: 19788059
    [TBL] [Abstract][Full Text] [Related]  

  • 60. NMR solution structure of SlyD from Escherichia coli: spatial separation of prolyl isomerase and chaperone function.
    Weininger U; Haupt C; Schweimer K; Graubner W; Kovermann M; Brüser T; Scholz C; Schaarschmidt P; Zoldak G; Schmid FX; Balbach J
    J Mol Biol; 2009 Mar; 387(2):295-305. PubMed ID: 19356587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.