BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 17445784)

  • 1. B3LYP/6-311++G* * study of structure and spin-spin coupling constant in heparin disaccharide.
    Hricovíni M; Scholtzová E; Bízik F
    Carbohydr Res; 2007 Jul; 342(10):1350-6. PubMed ID: 17445784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. B3LYP/6-311++G** study of structure and spin-spin coupling constant in methyl 2-O-sulfo-alpha-L-iduronate.
    Hricovíni M
    Carbohydr Res; 2006 Nov; 341(15):2575-80. PubMed ID: 16930570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of solvent and counterions upon structure and NMR spin-spin coupling constants in heparin disaccharide.
    Hricovíni M
    J Phys Chem B; 2011 Feb; 115(6):1503-11. PubMed ID: 21254757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between structure and three-bond proton-proton coupling constants in glycosaminoglycans.
    Hricovíni M; Bízik F
    Carbohydr Res; 2007 May; 342(6):779-83. PubMed ID: 17270159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR and DFT analysis of trisaccharide from heparin repeating sequence.
    Hricovíni M; Driguez PA; Malkina OL
    J Phys Chem B; 2014 Oct; 118(41):11931-42. PubMed ID: 25254635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution Structure of Heparin Pentasaccharide: NMR and DFT Analysis.
    Hricovíni M
    J Phys Chem B; 2015 Sep; 119(38):12397-409. PubMed ID: 26340667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution Conformation of Heparin Tetrasaccharide. DFT Analysis of Structure and Spin⁻Spin Coupling Constants.
    Hricovíni M; Hricovíni M
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30469334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformations of the iduronate ring in short heparin fragments described by time-averaged distance restrained molecular dynamics.
    Muñoz-García JC; Corzana F; de Paz JL; Angulo J; Nieto PM
    Glycobiology; 2013 Nov; 23(11):1220-9. PubMed ID: 23903025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of heparin activation of antithrombin: evidence for an induced-fit model of allosteric activation involving two interaction subsites.
    Desai UR; Petitou M; Björk I; Olson ST
    Biochemistry; 1998 Sep; 37(37):13033-41. PubMed ID: 9737884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depiction of the forces participating in the 2-O-sulfo-alpha-L-iduronic acid conformational preference in heparin sequences in aqueous solutions.
    Pol-Fachin L; Verli H
    Carbohydr Res; 2008 Jul; 343(9):1435-45. PubMed ID: 18452898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas-phase and solution conformations of the alpha-L-iduronic acid structural unit of heparin.
    Remko M; von der Lieth CW
    J Chem Inf Model; 2006; 46(3):1194-200. PubMed ID: 16711739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the substituents of the neighboring ring in the conformational equilibrium of iduronate in heparin-like trisaccharides.
    Muñoz-García JC; López-Prados J; Angulo J; Díaz-Contreras I; Reichardt N; de Paz JL; Martín-Lomas M; Nieto PM
    Chemistry; 2012 Dec; 18(51):16319-31. PubMed ID: 23143902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio study of hydrogen bonding and proton transfer in 3:1 FH:NH3 and FH:collidine complexes: structures and one- and two-bond coupling constants across hydrogen bonds.
    Del Bene JE; Elguero J
    J Phys Chem A; 2006 Jan; 110(3):1128-33. PubMed ID: 16420017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal binding to heparin disaccharides. II. First evidence for zinc chelation.
    Whitfield DM; Sarkar B
    Biopolymers; 1992 Jun; 32(6):597-619. PubMed ID: 1643265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the capillary electrophoresis separation of heparin disaccharides from nuclear magnetic resonance, pKa, and electrophoretic mobility measurements.
    Eldridge SL; Higgins LA; Dickey BJ; Larive CK
    Anal Chem; 2009 Sep; 81(17):7406-15. PubMed ID: 19653663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residual dipolar coupling investigation of a heparin tetrasaccharide confirms the limited effect of flexibility of the iduronic acid on the molecular shape of heparin.
    Jin L; Hricovíni M; Deakin JA; Lyon M; Uhrín D
    Glycobiology; 2009 Nov; 19(11):1185-96. PubMed ID: 19648354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational selection of the AGA*IA(M) heparin pentasaccharide when bound to the fibroblast growth factor receptor.
    Nieto L; Canales Á; Giménez-Gallego G; Nieto PM; Jiménez-Barbero J
    Chemistry; 2011 Sep; 17(40):11204-9. PubMed ID: 21922554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DFT and NMR studies of 2JCOH, 3JHCOH, and 3JCCOH spin-couplings in saccharides: C-O torsional bias and H-bonding in aqueous solution.
    Zhao H; Pan Q; Zhang W; Carmichael I; Serianni AS
    J Org Chem; 2007 Sep; 72(19):7071-82. PubMed ID: 17316047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the NMR spin-spin coupling constants across the hydrogen bonds in ubiquitin: the nature of the hydrogen bond as reflected by the coupling mechanism.
    Tuttle T; Kraka E; Wu A; Cremer D
    J Am Chem Soc; 2004 Apr; 126(16):5093-107. PubMed ID: 15099092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indirect nuclear 57Fe-13C and 57Fe-1H spin-spin coupling in ferrocenes and cyclopentadienyliron complexes: measurements and DFT calculations.
    Wrackmeyer B; Tok OL; Koridze AA
    Magn Reson Chem; 2004 Sep; 42(9):750-5. PubMed ID: 15307056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.