These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

963 related articles for article (PubMed ID: 17445891)

  • 41. Sleep-wake and circadian-dependent variation of cardiorespiratory coherence.
    Boudreau P; Brouse CJ; Dumont GA; Boivin DB
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3817-20. PubMed ID: 23366760
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of neural synchronization in the emergence of cognition across the wake-sleep cycle.
    Cantero JL; Atienza M
    Rev Neurosci; 2005; 16(1):69-83. PubMed ID: 15810655
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coupled flip-flop model for REM sleep regulation in the rat.
    Dunmyre JR; Mashour GA; Booth V
    PLoS One; 2014; 9(4):e94481. PubMed ID: 24722577
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Orexin neurons are necessary for the circadian control of REM sleep.
    Kantor S; Mochizuki T; Janisiewicz AM; Clark E; Nishino S; Scammell TE
    Sleep; 2009 Sep; 32(9):1127-34. PubMed ID: 19750917
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Circuit mechanisms and computational models of REM sleep.
    Héricé C; Patel AA; Sakata S
    Neurosci Res; 2019 Mar; 140():77-92. PubMed ID: 30118737
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sleep behavior across the lifespan: How a model can expand our current understanding.
    Crowley SJ
    Sleep Med Rev; 2016 Aug; 28():1-4. PubMed ID: 26790607
    [No Abstract]   [Full Text] [Related]  

  • 47. Alternating vigilance states: new insights regarding neuronal networks and mechanisms.
    Fort P; Bassetti CL; Luppi PH
    Eur J Neurosci; 2009 May; 29(9):1741-53. PubMed ID: 19473229
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The suprachiasmatic nucleus and sleep-wake regulation.
    Moore RY
    Postgrad Med; 2004 Dec; 116(6 Suppl Primary):6-9. PubMed ID: 19667692
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel biochemical manipulation of brain serotonin reveals a role of serotonin in the circadian rhythm of sleep-wake cycles.
    Nakamaru-Ogiso E; Miyamoto H; Hamada K; Tsukada K; Takai K
    Eur J Neurosci; 2012 Jun; 35(11):1762-70. PubMed ID: 22625848
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Brain and sleep: from neurons - to the molecules].
    Koval'zon VM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2013; 63(1):48-60. PubMed ID: 23697222
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mathematical models for sleep-wake dynamics: comparison of the two-process model and a mutual inhibition neuronal model.
    Skeldon AC; Dijk DJ; Derks G
    PLoS One; 2014; 9(8):e103877. PubMed ID: 25084361
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evidence that brain prostaglandin E2 is involved in physiological sleep-wake regulation in rats.
    Matsumura H; Honda K; Choi WS; Inoué S; Sakai T; Hayaishi O
    Proc Natl Acad Sci U S A; 1989 Jul; 86(14):5666-9. PubMed ID: 2748610
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of the substantia nigra pars reticulata in sleep-wakefulness: A review of research progress.
    Liang E; Chen Y; Yan Y; Wang S; Yuan J; Yu T
    Sleep Med; 2024 Jan; 113():284-292. PubMed ID: 38071927
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The neurobiological underpinning of the circadian wake signal.
    Zeitzer JM
    Biochem Pharmacol; 2021 Sep; 191():114386. PubMed ID: 33359009
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cortical oscillations in human medial temporal lobe during wakefulness and all-night sleep.
    Uchida S; Maehara T; Hirai N; Okubo Y; Shimizu H
    Brain Res; 2001 Feb; 891(1-2):7-19. PubMed ID: 11164805
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [About evolution of sleep-wakefulness cycle in vertebrates].
    Oganesian GA; Aristakesian EA; Vataev SI
    Ross Fiziol Zh Im I M Sechenova; 2012 Oct; 98(10):1161-87. PubMed ID: 23401913
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An integrate-and-fire mathematical model of sleep-wake neuronal networks in the developing mammal.
    Samberg AJ; Schmidt DR
    PLoS One; 2024; 19(10):e0307851. PubMed ID: 39361606
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mammalian sleep.
    Staunton H
    Naturwissenschaften; 2005 May; 92(5):203-20. PubMed ID: 15843983
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Loss of circadian organization of sleep and wakefulness during hibernation.
    Larkin JE; Franken P; Heller HC
    Am J Physiol Regul Integr Comp Physiol; 2002 Apr; 282(4):R1086-95. PubMed ID: 11893613
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Motor Theory of Sleep-Wake Control: Arousal-Action Circuit.
    Liu D; Dan Y
    Annu Rev Neurosci; 2019 Jul; 42():27-46. PubMed ID: 30699051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 49.