BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 17446294)

  • 21. pH landscapes in a novel five-species model of early dental biofilm.
    Schlafer S; Raarup MK; Meyer RL; Sutherland DS; Dige I; Nyengaard JR; Nyvad B
    PLoS One; 2011; 6(9):e25299. PubMed ID: 21966490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial arrangements and associative behavior of species in an in vitro oral biofilm model.
    Guggenheim M; Shapiro S; Gmür R; Guggenheim B
    Appl Environ Microbiol; 2001 Mar; 67(3):1343-50. PubMed ID: 11229930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Veillonella Catalase Protects the Growth of Fusobacterium nucleatum in Microaerophilic and Streptococcus gordonii-Resident Environments.
    Zhou P; Li X; Huang IH; Qi F
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28778894
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and pyrosequencing analysis of an in-vitro oral biofilm model.
    Kistler JO; Pesaro M; Wade WG
    BMC Microbiol; 2015 Feb; 15():24. PubMed ID: 25880819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Central role of the early colonizer Veillonella sp. in establishing multispecies biofilm communities with initial, middle, and late colonizers of enamel.
    Periasamy S; Kolenbrander PE
    J Bacteriol; 2010 Jun; 192(12):2965-72. PubMed ID: 20154130
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Thurnheer T; Karygianni L; Flury M; Belibasakis GN
    Front Microbiol; 2019; 10():1716. PubMed ID: 31417514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oral biofilm architecture on natural teeth.
    Zijnge V; van Leeuwen MB; Degener JE; Abbas F; Thurnheer T; Gmür R; Harmsen HJ
    PLoS One; 2010 Feb; 5(2):e9321. PubMed ID: 20195365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Actinomyces naeslundii in initial dental biofilm formation.
    Dige I; Raarup MK; Nyengaard JR; Kilian M; Nyvad B
    Microbiology (Reading); 2009 Jul; 155(Pt 7):2116-2126. PubMed ID: 19406899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of histatin-derived basic antimicrobial peptides on oral biofilms.
    Helmerhorst EJ; Hodgson R; van 't Hof W; Veerman EC; Allison C; Nieuw Amerongen AV
    J Dent Res; 1999 Jun; 78(6):1245-50. PubMed ID: 10371248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence of an in vitro Coupled Diffusion Mechanism of Lesion Formation within Microcosm Dental Plaque.
    Owens GJ; Lynch RJM; Hope CK; Cooper L; Higham SM; Valappil SP
    Caries Res; 2017; 51(3):188-197. PubMed ID: 28245470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Red wine and oenological extracts display antimicrobial effects in an oral bacteria biofilm model.
    Muñoz-González I; Thurnheer T; Bartolomé B; Moreno-Arribas MV
    J Agric Food Chem; 2014 May; 62(20):4731-7. PubMed ID: 24773294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of multi-species consortia biofilms of oral bacteria as an enamel and root caries model system.
    Shu M; Wong L; Miller JH; Sissons CH
    Arch Oral Biol; 2000 Jan; 45(1):27-40. PubMed ID: 10669090
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions between Streptococcus oralis, Actinomyces oris, and Candida albicans in the development of multispecies oral microbial biofilms on salivary pellicle.
    Cavalcanti IM; Del Bel Cury AA; Jenkinson HF; Nobbs AH
    Mol Oral Microbiol; 2017 Feb; 32(1):60-73. PubMed ID: 26834007
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Does assessment of microbial composition of plaque/saliva allow for diagnosis of disease activity of individuals?
    Bowden GH
    Community Dent Oral Epidemiol; 1997 Feb; 25(1):76-81. PubMed ID: 9088695
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shifts in the microbial population in relation to in situ caries progression.
    Thomas RZ; Zijnge V; Ciçek A; de Soet JJ; Harmsen HJ; Huysmans MC
    Caries Res; 2012; 46(5):427-31. PubMed ID: 22739571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Confocal Raman microscopy to identify bacteria in oral subgingival biofilm models.
    Kriem LS; Wright K; Ccahuana-Vasquez RA; Rupp S
    PLoS One; 2020; 15(5):e0232912. PubMed ID: 32392236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling of diffusion transport through oral biofilms with the inverse problem method.
    Ma R; Liu J; Jiang YT; Liu Z; Tang ZS; Ye DX; Zeng J; Huang ZW
    Int J Oral Sci; 2010 Dec; 2(4):190-7. PubMed ID: 21404968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Colonisation of gingival epithelia by subgingival biofilms in vitro: role of "red complex" bacteria.
    Thurnheer T; Belibasakis GN; Bostanci N
    Arch Oral Biol; 2014 Sep; 59(9):977-86. PubMed ID: 24949828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular characterization of subject-specific oral microflora during initial colonization of enamel.
    Diaz PI; Chalmers NI; Rickard AH; Kong C; Milburn CL; Palmer RJ; Kolenbrander PE
    Appl Environ Microbiol; 2006 Apr; 72(4):2837-48. PubMed ID: 16597990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The microflora associated with the development of initial enamel decalcification below orthodontic bands in vivo in children living in a fluoridated-water area.
    Boyar RM; Thylstrup A; Holmen L; Bowden GH
    J Dent Res; 1989 Dec; 68(12):1734-8. PubMed ID: 2600252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.