BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 17446433)

  • 1. Formation of extracellular matrix-digesting invadopodia by primary aortic smooth muscle cells.
    Furmaniak-Kazmierczak E; Crawley SW; Carter RL; Maurice DH; Côté GP
    Circ Res; 2007 May; 100(9):1328-36. PubMed ID: 17446433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissecting the functional domain requirements of cortactin in invadopodia formation.
    Webb BA; Jia L; Eves R; Mak AS
    Eur J Cell Biol; 2007 Apr; 86(4):189-206. PubMed ID: 17343955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation.
    Ayala I; Baldassarre M; Giacchetti G; Caldieri G; Tetè S; Luini A; Buccione R
    J Cell Sci; 2008 Feb; 121(Pt 3):369-78. PubMed ID: 18198194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function.
    Artym VV; Zhang Y; Seillier-Moiseiwitsch F; Yamada KM; Mueller SC
    Cancer Res; 2006 Mar; 66(6):3034-43. PubMed ID: 16540652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells.
    Yamaguchi H; Takeo Y; Yoshida S; Kouchi Z; Nakamura Y; Fukami K
    Cancer Res; 2009 Nov; 69(22):8594-602. PubMed ID: 19887621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia.
    Clark ES; Whigham AS; Yarbrough WG; Weaver AM
    Cancer Res; 2007 May; 67(9):4227-35. PubMed ID: 17483334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diaphanous-related formins are required for invadopodia formation and invasion of breast tumor cells.
    Lizárraga F; Poincloux R; Romao M; Montagnac G; Le Dez G; Bonne I; Rigaill G; Raposo G; Chavrier P
    Cancer Res; 2009 Apr; 69(7):2792-800. PubMed ID: 19276357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of invadopodia in a complex 3D environment.
    Tolde O; Rösel D; Veselý P; Folk P; Brábek J
    Eur J Cell Biol; 2010 Sep; 89(9):674-80. PubMed ID: 20537759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WAVE2- and microtubule-dependent formation of long protrusions and invasion of cancer cells cultured on three-dimensional extracellular matrices.
    Kikuchi K; Takahashi K
    Cancer Sci; 2008 Nov; 99(11):2252-9. PubMed ID: 18795939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulin-like growth factor-I (IGF-I) induces epidermal growth factor receptor transactivation and cell proliferation through reactive oxygen species.
    Meng D; Shi X; Jiang BH; Fang J
    Free Radic Biol Med; 2007 Jun; 42(11):1651-60. PubMed ID: 17462533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation.
    Bowden ET; Barth M; Thomas D; Glazer RI; Mueller SC
    Oncogene; 1999 Aug; 18(31):4440-9. PubMed ID: 10442635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The matrix corroded: podosomes and invadopodia in extracellular matrix degradation.
    Linder S
    Trends Cell Biol; 2007 Mar; 17(3):107-17. PubMed ID: 17275303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Berberine inhibits platelet-derived growth factor-induced growth and migration partly through an AMPK-dependent pathway in vascular smooth muscle cells.
    Liang KW; Yin SC; Ting CT; Lin SJ; Hsueh CM; Chen CY; Hsu SL
    Eur J Pharmacol; 2008 Aug; 590(1-3):343-54. PubMed ID: 18590725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of cortactin by p21-activated kinase.
    Webb BA; Zhou S; Eves R; Shen L; Jia L; Mak AS
    Arch Biochem Biophys; 2006 Dec; 456(2):183-93. PubMed ID: 16854367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Invadopodia: at the cutting edge of tumour invasion.
    Stylli SS; Kaye AH; Lock P
    J Clin Neurosci; 2008 Jul; 15(7):725-37. PubMed ID: 18468901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular smooth muscle cells efficiently activate a new proteinase cascade involving plasminogen and fibronectin.
    Houard X; Monnot C; Dive V; Corvol P; Pagano M
    J Cell Biochem; 2003 Apr; 88(6):1188-201. PubMed ID: 12647301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia.
    Poincloux R; Lizárraga F; Chavrier P
    J Cell Sci; 2009 Sep; 122(Pt 17):3015-24. PubMed ID: 19692588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The guanine nucleotide exchange factor Arhgef5 plays crucial roles in Src-induced podosome formation.
    Kuroiwa M; Oneyama C; Nada S; Okada M
    J Cell Sci; 2011 May; 124(Pt 10):1726-38. PubMed ID: 21525037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrin cleavage facilitates cell surface-associated proteolysis required for vascular smooth muscle cell invasion.
    Kappert K; Meyborg H; Baumann B; Furundzija V; Kaufmann J; Graf K; Stibenz D; Fleck E; Stawowy P
    Int J Biochem Cell Biol; 2009 Jul; 41(7):1511-7. PubMed ID: 19166965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MT1-MMP-dependent invasion is regulated by TI-VAMP/VAMP7.
    Steffen A; Le Dez G; Poincloux R; Recchi C; Nassoy P; Rottner K; Galli T; Chavrier P
    Curr Biol; 2008 Jun; 18(12):926-31. PubMed ID: 18571410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.