BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 17446467)

  • 1. Na+/Ca2+ exchanger knockout mice: plasticity of cardiac excitation-contraction coupling.
    Pott C; Henderson SA; Goldhaber JI; Philipson KD
    Ann N Y Acad Sci; 2007 Mar; 1099():270-5. PubMed ID: 17446467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitation-contraction coupling in Na+-Ca2+ exchanger knockout mice: reduced transsarcolemmal Ca2+ flux.
    Pott C; Philipson KD; Goldhaber JI
    Circ Res; 2005 Dec; 97(12):1288-95. PubMed ID: 16293789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of shortened action potential duration in Na+-Ca2+ exchanger knockout mice.
    Pott C; Ren X; Tran DX; Yang MJ; Henderson S; Jordan MC; Roos KP; Garfinkel A; Philipson KD; Goldhaber JI
    Am J Physiol Cell Physiol; 2007 Feb; 292(2):C968-73. PubMed ID: 16943244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of cardiac L-type Ca2+ current in Na+-Ca2+ exchanger knockout mice: functional coupling of the Ca2+ channel and the Na+-Ca2+ exchanger.
    Pott C; Yip M; Goldhaber JI; Philipson KD
    Biophys J; 2007 Feb; 92(4):1431-7. PubMed ID: 17114214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional adult myocardium in the absence of Na+-Ca2+ exchange: cardiac-specific knockout of NCX1.
    Henderson SA; Goldhaber JI; So JM; Han T; Motter C; Ngo A; Chantawansri C; Ritter MR; Friedlander M; Nicoll DA; Frank JS; Jordan MC; Roos KP; Ross RS; Philipson KD
    Circ Res; 2004 Sep; 95(6):604-11. PubMed ID: 15308581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic manipulation of cardiac Na+/Ca2+ exchange expression.
    Pott C; Goldhaber JI; Philipson KD
    Biochem Biophys Res Commun; 2004 Oct; 322(4):1336-40. PubMed ID: 15336980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simulation study to rescue the Na+/Ca2+ exchanger knockout mice.
    Sarai N; Kobayashi T; Matsuoka S; Noma A
    J Physiol Sci; 2006 Jun; 56(3):211-7. PubMed ID: 16839455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homozygous overexpression of the Na+-Ca2+ exchanger in mice: evidence for increased transsarcolemmal Ca2+ fluxes.
    Pott C; Goldhaber JI; Philipson KD
    Ann N Y Acad Sci; 2007 Mar; 1099():310-4. PubMed ID: 17446472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium-calcium exchange is essential for effective triggering of calcium release in mouse heart.
    Neco P; Rose B; Huynh N; Zhang R; Bridge JH; Philipson KD; Goldhaber JI
    Biophys J; 2010 Aug; 99(3):755-64. PubMed ID: 20682252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular [Na(+)] modulates synergy between Na(+)/Ca (2+) exchanger and L-type Ca (2+) current in cardiac excitation-contraction coupling during action potentials.
    Ramirez RJ; Sah R; Liu J; Rose RA; Backx PH
    Basic Res Cardiol; 2011 Nov; 106(6):967-77. PubMed ID: 21779914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na(+)--Ca2+ exchange in the regulation of cardiac excitation-contraction coupling.
    Reuter H; Pott C; Goldhaber JI; Henderson SA; Philipson KD; Schwinger RH
    Cardiovasc Res; 2005 Aug; 67(2):198-207. PubMed ID: 15935336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adverse bioenergetic consequences of Na+-Ca2+ exchanger-mediated Ca2+ influx in cardiac myocytes.
    Kohlhaas M; Maack C
    Circulation; 2010 Nov; 122(22):2273-80. PubMed ID: 21098439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Functional analysis of Na+/Ca2+ exchanger using novel drugs and genetically engineered mice].
    Iwamoto T; Kita S; Shigekawa M
    Nihon Yakurigaku Zasshi; 2002 Nov; 120(1):91P-93P. PubMed ID: 12491791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forefront of Na+/Ca2+ exchanger studies: role of Na+/Ca2+ exchanger--lessons from knockout mice.
    Komuro I; Ohtsuka M
    J Pharmacol Sci; 2004 Sep; 96(1):23-6. PubMed ID: 15359083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenovirally delivered shRNA strongly inhibits Na+-Ca2+ exchanger expression but does not prevent contraction of neonatal cardiomyocytes.
    Hurtado C; Ander BP; Maddaford TG; Lukas A; Hryshko LV; Pierce GN
    J Mol Cell Cardiol; 2005 Apr; 38(4):647-54. PubMed ID: 15808841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac sodium-calcium exchange and efficient excitation-contraction coupling: implications for heart disease.
    Goldhaber JI; Philipson KD
    Adv Exp Med Biol; 2013; 961():355-64. PubMed ID: 23224894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium calcium exchanger plays a key role in alteration of cardiac function in response to pressure overload.
    Takimoto E; Yao A; Toko H; Takano H; Shimoyama M; Sonoda M; Wakimoto K; Takahashi T; Akazawa H; Mizukami M; Nagai T; Nagai R; Komuro I
    FASEB J; 2002 Mar; 16(3):373-8. PubMed ID: 11874986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute Genetic Ablation of Cardiac Sodium/Calcium Exchange in Adult Mice: Implications for Cardiomyocyte Calcium Regulation, Cardioprotection, and Arrhythmia.
    Lotteau S; Zhang R; Hazan A; Grabar C; Gonzalez D; Aynaszyan S; Philipson KD; Ottolia M; Goldhaber JI
    J Am Heart Assoc; 2021 Sep; 10(17):e019273. PubMed ID: 34472363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac sodium transport and excitation-contraction coupling.
    Aronsen JM; Swift F; Sejersted OM
    J Mol Cell Cardiol; 2013 Aug; 61():11-9. PubMed ID: 23774049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel stimulatory actions of the phytoestrogen genistein: effects on the gain of cardiac excitation-contraction coupling.
    Liew R; Macleod KT; Collins P
    FASEB J; 2003 Jul; 17(10):1307-9. PubMed ID: 12759336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.