BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 17446472)

  • 21. The role of the Na+/Ca2+ exchangers in Ca2+ dynamics in ventricular myocytes.
    Sher AA; Noble PJ; Hinch R; Gavaghan DJ; Noble D
    Prog Biophys Mol Biol; 2008; 96(1-3):377-98. PubMed ID: 17959231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mesenteric lymph from rats with thermal injury prolongs the action potential and increases Ca2+ transient in rat ventricular myocytes.
    Yatani A; Xu DZ; Kim SJ; Vatner SF; Deitch EA
    Shock; 2003 Nov; 20(5):458-64. PubMed ID: 14560111
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Na+-Ca2+ exchanger activity on the alpha-amino-3-hydroxy-5-methyl-4-isoxazolone-propionate-induced Ca2+ influx in cerebellar Purkinje neurons.
    Kim YT; Park YJ; Jung SY; Seo WS; Suh CK
    Neuroscience; 2005; 131(3):589-99. PubMed ID: 15730865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of SN-6, a novel Na+/Ca2+ exchange inhibitor in guinea pig cardiac ventricular myocytes.
    Niu CF; Watanabe Y; Ono K; Iwamoto T; Yamashita K; Satoh H; Urushida T; Hayashi H; Kimura J
    Eur J Pharmacol; 2007 Nov; 573(1-3):161-9. PubMed ID: 17644086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Na(+)--Ca2+ exchange in the regulation of cardiac excitation-contraction coupling.
    Reuter H; Pott C; Goldhaber JI; Henderson SA; Philipson KD; Schwinger RH
    Cardiovasc Res; 2005 Aug; 67(2):198-207. PubMed ID: 15935336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracellular [Na(+)] modulates synergy between Na(+)/Ca (2+) exchanger and L-type Ca (2+) current in cardiac excitation-contraction coupling during action potentials.
    Ramirez RJ; Sah R; Liu J; Rose RA; Backx PH
    Basic Res Cardiol; 2011 Nov; 106(6):967-77. PubMed ID: 21779914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The origin of increased cytoplasmic calcium upon reversal of the Na+/Ca(2+)-exchanger in isolated rat ventricular myocytes.
    Baartscheer A; Schumacher CA; Opthof T; Fiolet JW
    J Mol Cell Cardiol; 1996 Sep; 28(9):1963-73. PubMed ID: 8899555
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased exchange current but normal Ca2+ transport via Na+-Ca2+ exchange during cardiac hypertrophy after myocardial infarction.
    Gómez AM; Schwaller B; Porzig H; Vassort G; Niggli E; Egger M
    Circ Res; 2002 Aug; 91(4):323-30. PubMed ID: 12193465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stimulation of Na+-Ca2+ exchange by purified antibody against alpha-2 repeat of Na+-Ca2+ exchanger in rat cardiomyocytes.
    Feng QL; Wu DM; Cui XL; Zhao HC; Fan GQ; Zhao LY; Wu BW
    Acta Pharmacol Sin; 2008 Oct; 29(10):1175-80. PubMed ID: 18817621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of Na⁺/Ca²⁺ exchanger in Ca²⁺ homeostasis in rat suprachiasmatic nucleus neurons.
    Wang YC; Chen YS; Cheng RC; Huang RC
    J Neurophysiol; 2015 Apr; 113(7):2114-26. PubMed ID: 25568156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of the Na(+)-Ca(2+) exchanger as an alternative trigger of CICR in mammalian cardiac myocytes.
    Han C; Tavi P; Weckström M
    Biophys J; 2002 Mar; 82(3):1483-96. PubMed ID: 11867463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional properties of transgenic mouse hearts overexpressing both calsequestrin and the Na(+)-Ca(2+) exchanger.
    Linck B; Bokník P; Huke S; Kirchhefer U; Knapp J; Lüss H; Müller FU; Neumann J; Tanriseven Z; Vahlensieck U; Baba HA; Jones LR; Philipson KD; Schmitz W
    J Pharmacol Exp Ther; 2000 Aug; 294(2):648-57. PubMed ID: 10900244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Na(+)-Ca(2+) exchange current and submembrane [Ca(2+)] during the cardiac action potential.
    Weber CR; Piacentino V; Ginsburg KS; Houser SR; Bers DM
    Circ Res; 2002 Feb; 90(2):182-9. PubMed ID: 11834711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Na(+)/Ca(2+)-exchanger overexpression on excitation-contraction coupling in adult rabbit ventricular myocytes.
    Ranu HK; Terracciano CM; Davia K; Bernobich E; Chaudhri B; Robinson SE; Bin Kang Z; Hajjar RJ; MacLeod KT; Harding SE
    J Mol Cell Cardiol; 2002 Apr; 34(4):389-400. PubMed ID: 11991729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of age and run training on cardiac Na+/Ca2+ exchange.
    Mace LC; Palmer BM; Brown DA; Jew KN; Lynch JM; Glunt JM; Parsons TA; Cheung JY; Moore RL
    J Appl Physiol (1985); 2003 Nov; 95(5):1994-2003. PubMed ID: 12882992
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions between Ca2+ binding domains of the Na+-Ca2+ exchanger and secondary regulation.
    Ottolia M; Nicoll DA; John S; Philipson KD
    Channels (Austin); 2010; 4(3):159-62. PubMed ID: 20224291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Profile of L-type Ca(2+) current and Na(+)/Ca(2+) exchange current during cardiac action potential in ventricular myocytes.
    Banyasz T; Horvath B; Jian Z; Izu LT; Chen-Izu Y
    Heart Rhythm; 2012 Jan; 9(1):134-42. PubMed ID: 21884673
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Forefront of Na+/Ca2+ exchanger studies: role of Na+/Ca2+ exchanger--lessons from knockout mice.
    Komuro I; Ohtsuka M
    J Pharmacol Sci; 2004 Sep; 96(1):23-6. PubMed ID: 15359083
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrophysiological demonstration of Na+/Ca2+ exchange in bovine articular chondrocytes.
    Sánchez JC; Powell T; Staines HM; Wilkins RJ
    Biorheology; 2006; 43(1):83-94. PubMed ID: 16627929
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Importance of K+-dependent Na+/Ca2+-exchanger 2, NCKX2, in motor learning and memory.
    Li XF; Kiedrowski L; Tremblay F; Fernandez FR; Perizzolo M; Winkfein RJ; Turner RW; Bains JS; Rancourt DE; Lytton J
    J Biol Chem; 2006 Mar; 281(10):6273-82. PubMed ID: 16407245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.