BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

628 related articles for article (PubMed ID: 17446890)

  • 1. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes.
    Reetz MT; Carballeira JD
    Nat Protoc; 2007; 2(4):891-903. PubMed ID: 17446890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability.
    Reetz MT; Carballeira JD; Vogel A
    Angew Chem Int Ed Engl; 2006 Nov; 45(46):7745-51. PubMed ID: 17075931
    [No Abstract]   [Full Text] [Related]  

  • 3. Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods.
    Reetz MT; Prasad S; Carballeira JD; Gumulya Y; Bocola M
    J Am Chem Soc; 2010 Jul; 132(26):9144-52. PubMed ID: 20536132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knowledge-guided laboratory evolution of protein thermolability.
    Reetz MT; Soni P; Fernández L
    Biotechnol Bioeng; 2009 Apr; 102(6):1712-7. PubMed ID: 19072845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing the stability of an enzyme toward hostile organic solvents by directed evolution based on iterative saturation mutagenesis using the B-FIT method.
    Reetz MT; Soni P; Fernández L; Gumulya Y; Carballeira JD
    Chem Commun (Camb); 2010 Dec; 46(45):8657-8. PubMed ID: 20957255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shedding light on the efficacy of laboratory evolution based on iterative saturation mutagenesis.
    Reetz MT; Kahakeaw D; Sanchis J
    Mol Biosyst; 2009 Feb; 5(2):115-22. PubMed ID: 19156255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of computational prescreening and experimental library construction can accelerate enzyme optimization by directed evolution.
    Funke SA; Otte N; Eggert T; Bocola M; Jaeger KE; Thiel W
    Protein Eng Des Sel; 2005 Nov; 18(11):509-14. PubMed ID: 16203748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase.
    Acharya P; Rajakumara E; Sankaranarayanan R; Rao NM
    J Mol Biol; 2004 Aug; 341(5):1271-81. PubMed ID: 15321721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting the lipase from Pseudomonas aeruginosa: directed evolution of substrate acceptance and enantioselectivity using iterative saturation mutagenesis.
    Prasad S; Bocola M; Reetz MT
    Chemphyschem; 2011 Jun; 12(8):1550-7. PubMed ID: 21472964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed evolution of Bacillus subtilis lipase A by use of enantiomeric phosphonate inhibitors: crystal structures and phage display selection.
    Dröge MJ; Boersma YL; van Pouderoyen G; Vrenken TE; Rüggeberg CJ; Reetz MT; Dijkstra BW; Quax WJ
    Chembiochem; 2006 Jan; 7(1):149-57. PubMed ID: 16342303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Addressing the numbers problem in directed evolution.
    Reetz MT; Kahakeaw D; Lohmer R
    Chembiochem; 2008 Jul; 9(11):1797-804. PubMed ID: 18567049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changing the enantioselectivity of enzymes by directed evolution.
    Reetz MT
    Methods Enzymol; 2004; 388():238-56. PubMed ID: 15289076
    [No Abstract]   [Full Text] [Related]  

  • 13. Improved catalytic efficiency of endo-beta-1,4-glucanase from Bacillus subtilis BME-15 by directed evolution.
    Lin L; Meng X; Liu P; Hong Y; Wu G; Huang X; Li C; Dong J; Xiao L; Liu Z
    Appl Microbiol Biotechnol; 2009 Mar; 82(4):671-9. PubMed ID: 19050861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the selectivity and stability of proteins by new strategies in directed evolution: the case of organocatalytic enzymes.
    Reetz MT
    Ernst Schering Found Symp Proc; 2007; (2):321-40. PubMed ID: 18642531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Many pathways in laboratory evolution can lead to improved enzymes: how to escape from local minima.
    Gumulya Y; Sanchis J; Reetz MT
    Chembiochem; 2012 May; 13(7):1060-6. PubMed ID: 22522601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing and analyzing the fitness landscape of an experimental evolutionary process.
    Reetz MT; Sanchis J
    Chembiochem; 2008 Sep; 9(14):2260-7. PubMed ID: 18712749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iterative saturation mutagenesis: a powerful approach to engineer proteins by systematically simulating Darwinian evolution.
    Acevedo-Rocha CG; Hoebenreich S; Reetz MT
    Methods Mol Biol; 2014; 1179():103-28. PubMed ID: 25055773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the thermal robustness of an enzyme by directed evolution: least favorable starting points and inferior mutants can map superior evolutionary pathways.
    Gumulya Y; Reetz MT
    Chembiochem; 2011 Nov; 12(16):2502-10. PubMed ID: 21913300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel genetic selection system for improved enantioselectivity of Bacillus subtilis lipase A.
    Boersma YL; Dröge MJ; van der Sloot AM; Pijning T; Cool RH; Dijkstra BW; Quax WJ
    Chembiochem; 2008 May; 9(7):1110-5. PubMed ID: 18383241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from Deinococcus radiodurans.
    Hawwa R; Larsen SD; Ratia K; Mesecar AD
    J Mol Biol; 2009 Oct; 393(1):36-57. PubMed ID: 19631223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.