BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

628 related articles for article (PubMed ID: 17446890)

  • 21. Directed evolution by using iterative saturation mutagenesis based on multiresidue sites.
    Parra LP; Agudo R; Reetz MT
    Chembiochem; 2013 Nov; 14(17):2301-9. PubMed ID: 24136881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Incorporation of non-natural modules into proteins: structural features beyond the genetic code.
    Arnold U
    Biotechnol Lett; 2009 Aug; 31(8):1129-39. PubMed ID: 19404746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores.
    Gupta N; Farinas ET
    Protein Eng Des Sel; 2010 Aug; 23(8):679-82. PubMed ID: 20551082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inverting enantioselectivity of Burkholderia gladioli esterase EstB by directed and designed evolution.
    Ivancic M; Valinger G; Gruber K; Schwab H
    J Biotechnol; 2007 Mar; 129(1):109-22. PubMed ID: 17147964
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site.
    Bordes F; Cambon E; Dossat-Létisse V; André I; Croux C; Nicaud JM; Marty A
    Chembiochem; 2009 Jul; 10(10):1705-13. PubMed ID: 19504508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures.
    Kumar V; Yedavalli P; Gupta V; Rao NM
    Protein Eng Des Sel; 2014 Mar; 27(3):73-82. PubMed ID: 24402332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DC-Analyzer-facilitated combinatorial strategy for rapid directed evolution of functional enzymes with multiple mutagenesis sites.
    Wang X; Zheng K; Zheng H; Nie H; Yang Z; Tang L
    J Biotechnol; 2014 Dec; 192 Pt A():102-7. PubMed ID: 25449543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents.
    Moore JC; Arnold FH
    Nat Biotechnol; 1996 Apr; 14(4):458-67. PubMed ID: 9630920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Further improvement of phosphite dehydrogenase thermostability by saturation mutagenesis.
    McLachlan MJ; Johannes TW; Zhao H
    Biotechnol Bioeng; 2008 Feb; 99(2):268-74. PubMed ID: 17615560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermostabilization of an esterase by alignment-guided focussed directed evolution.
    Jochens H; Aerts D; Bornscheuer UT
    Protein Eng Des Sel; 2010 Dec; 23(12):903-9. PubMed ID: 20947674
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight.
    Ahmad S; Kamal MZ; Sankaranarayanan R; Rao NM
    J Mol Biol; 2008 Aug; 381(2):324-40. PubMed ID: 18599073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategy and success for the directed evolution of enzymes.
    Dalby PA
    Curr Opin Struct Biol; 2011 Aug; 21(4):473-80. PubMed ID: 21684150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards understanding directed evolution: more than half of all amino acid positions contribute to ionic liquid resistance of Bacillus subtilis lipase A.
    Frauenkron-Machedjou VJ; Fulton A; Zhu L; Anker C; Bocola M; Jaeger KE; Schwaneberg U
    Chembiochem; 2015 Apr; 16(6):937-45. PubMed ID: 25786654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loop grafting of Bacillus subtilis lipase A: inversion of enantioselectivity.
    Boersma YL; Pijning T; Bosma MS; van der Sloot AM; Godinho LF; Dröge MJ; Winter RT; van Pouderoyen G; Dijkstra BW; Quax WJ
    Chem Biol; 2008 Aug; 15(8):782-9. PubMed ID: 18721749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Directed evolution of enzyme stability.
    Eijsink VG; Gåseidnes S; Borchert TV; van den Burg B
    Biomol Eng; 2005 Jun; 22(1-3):21-30. PubMed ID: 15857780
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved activity and thermostability of Bacillus pumilus lipase by directed evolution.
    Akbulut N; Tuzlakoğlu Öztürk M; Pijning T; İşsever Öztürk S; Gümüşel F
    J Biotechnol; 2013 Mar; 164(1):123-9. PubMed ID: 23313890
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Directed coevolution of stability and catalytic activity in calcium-free subtilisin.
    Strausberg SL; Ruan B; Fisher KE; Alexander PA; Bryan PN
    Biochemistry; 2005 Mar; 44(9):3272-9. PubMed ID: 15736937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enantioselective biocatalysis optimized by directed evolution.
    Jaeger KE; Eggert T
    Curr Opin Biotechnol; 2004 Aug; 15(4):305-13. PubMed ID: 15358000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions.
    Reetz MT
    Angew Chem Int Ed Engl; 2011 Jan; 50(1):138-74. PubMed ID: 20715024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis.
    Zhong CQ; Song S; Fang N; Liang X; Zhu H; Tang XF; Tang B
    Biotechnol Bioeng; 2009 Dec; 104(5):862-70. PubMed ID: 19609954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.