These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 17446913)

  • 1. Light diffusion model for determination of optical properties of rectangular parallelepiped highly scattering media.
    Taniguchi J; Murata H; Okamura Y
    Appl Opt; 2007 May; 46(14):2649-55. PubMed ID: 17446913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element modeling of light propagation in turbid media under illumination of a continuous-wave beam.
    Wang A; Lu R; Xie L
    Appl Opt; 2016 Jan; 55(1):95-103. PubMed ID: 26835627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the scattering delay on time-dependent photon migration in turbid media.
    Yaroslavsky IV; Yaroslavsky AN; Tuchin VV; Schwarzmaier HJ
    Appl Opt; 1997 Sep; 36(25):6529-38. PubMed ID: 18259514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid monte carlo diffusion model.
    Alexandrakis G; Busch DR; Faris GW; Patterson MS
    Appl Opt; 2001 Aug; 40(22):3810-21. PubMed ID: 18360415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The finite-element method for the propagation of light in scattering media: frequency domain case.
    Schweiger M; Arridge SR
    Med Phys; 1997 Jun; 24(6):895-902. PubMed ID: 9198025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light propagation in structural anisotropic media in the steady-state and time domains.
    Kienle A; Foschum F; Hohmann A
    Phys Med Biol; 2013 Sep; 58(17):6205-23. PubMed ID: 23948766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental validation of Monte Carlo and finite-element methods for the estimation of the optical path length in inhomogeneous tissue.
    Okada E; Schweiger M; Arridge SR; Firbank M; Delpy DT
    Appl Opt; 1996 Jul; 35(19):3362-71. PubMed ID: 21102723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast algorithm to determine optical properties of a turbid medium from time-resolved measurements.
    Wang RK; Wickramasinghe YA
    Appl Opt; 1998 Nov; 37(31):7342-51. PubMed ID: 18301568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical property measurements of turbid media in a small-volume cuvette with frequency-domain photon migration.
    Coquoz O; Svaasand LO; Tromberg BJ
    Appl Opt; 2001 Dec; 40(34):6281-91. PubMed ID: 18364934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive determination of the optical properties of two-layered turbid media.
    Kienle A; Patterson MS; Dögnitz N; Bays R; Wagniνres G; van den Bergh H
    Appl Opt; 1998 Feb; 37(4):779-91. PubMed ID: 18268653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffuse photon propagation in multilayered geometries.
    Sikora J; Zacharopoulos A; Douiri A; Schweiger M; Horesh L; Arridge SR; Ripoll J
    Phys Med Biol; 2006 Feb; 51(3):497-516. PubMed ID: 16424578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions.
    Tarvainen T; Vauhkonen M; Kolehmainen V; Arridge SR; Kaipio JP
    Phys Med Biol; 2005 Oct; 50(20):4913-30. PubMed ID: 16204880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo.
    Farrell TJ; Patterson MS; Wilson B
    Med Phys; 1992; 19(4):879-88. PubMed ID: 1518476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region.
    Hayashi T; Kashio Y; Okada E
    Appl Opt; 2003 Jun; 42(16):2888-96. PubMed ID: 12790437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte carlo procedure for investigating light propagation and imaging of highly scattering media.
    Sassaroli A; Blumetti C; Martelli F; Alianelli L; Contini D; Ismaelli A; Zaccanti G
    Appl Opt; 1998 Nov; 37(31):7392-400. PubMed ID: 18301573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient numerical modelling of time-domain light propagation in curved 3D absorbing and scattering media with finite differences.
    Allali A; Klose AD; Bérubé-Lauzière Y
    Biomed Opt Express; 2021 Mar; 12(3):1422-1436. PubMed ID: 33796363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element simulation of light transfer in turbid media under structured illumination.
    Hu D; Lu R; Ying Y
    Appl Opt; 2017 Jul; 56(21):6035-6042. PubMed ID: 29047929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of heterogeneities embedded within a turbid slab media using time- and frequency-domain methods: application to the mammography.
    Piron V; L'Huillier JP
    Lasers Med Sci; 2006 Jul; 21(2):67-73. PubMed ID: 16596457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic effects in highly scattering media.
    Heino J; Arridge S; Sikora J; Somersalo E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):031908. PubMed ID: 14524804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency-domain technique for optical property measurements in moderately scattering media.
    Gerken M; Godfrey D; Faris GW
    Opt Lett; 2000 Jan; 25(1):7-9. PubMed ID: 18059764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.