These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 17447550)
41. Role of novel bacterial Raoultella sp. strain X13 in plant growth promotion and cadmium bioremediation in soil. Xu S; Xing Y; Liu S; Huang Q; Chen W Appl Microbiol Biotechnol; 2019 May; 103(9):3887-3897. PubMed ID: 30820635 [TBL] [Abstract][Full Text] [Related]
42. Isolation and characterization of a Cr(VI) reducing Bacillus firmus strain from industrial effluents. Sau GB; Chatterjee S; Sinha S; Mukherjee SK Pol J Microbiol; 2008; 57(4):327-32. PubMed ID: 19275047 [TBL] [Abstract][Full Text] [Related]
43. Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides. Peng W; Li X; Song J; Jiang W; Liu Y; Fan W Chemosphere; 2018 Apr; 197():33-41. PubMed ID: 29331716 [TBL] [Abstract][Full Text] [Related]
44. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
45. Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9. Wani PA; Khan MS Bull Environ Contam Toxicol; 2013 Jul; 91(1):117-24. PubMed ID: 23609454 [TBL] [Abstract][Full Text] [Related]
46. Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals. Chiboub M; Saadani O; Fatnassi IC; Abdelkrim S; Abid G; Jebara M; Jebara SH C R Biol; 2016; 339(9-10):391-8. PubMed ID: 27498183 [TBL] [Abstract][Full Text] [Related]
47. The potential of an energy crop "Conocarpus erectus" for lead phytoextraction and phytostabilization of chromium, nickel, and cadmium: An excellent option for the management of multi-metal contaminated soils. Tauqeer HM; Ur-Rahman M; Hussain S; Abbas F; Iqbal M Ecotoxicol Environ Saf; 2019 May; 173():273-284. PubMed ID: 30776560 [TBL] [Abstract][Full Text] [Related]
48. Comparative impact of cadmium on two phenanthrene-degrading bacteria isolated from cadmium and phenanthrene co-contaminated soil in China. Xiao J; Guo L; Wang S; Lu Y J Hazard Mater; 2010 Feb; 174(1-3):818-23. PubMed ID: 19853994 [TBL] [Abstract][Full Text] [Related]
49. Biodegradability and ecological safety assessment of Stenotrophomonas sp. DDT-1 in the DDT-contaminated soil. Fang H; Deng Y; Ge Q; Mei J; Zhang H; Wang H; Yu Y Ecotoxicol Environ Saf; 2018 Aug; 158():145-153. PubMed ID: 29679846 [TBL] [Abstract][Full Text] [Related]
50. Characterization of Cu(II) and Cd(II) resistance mechanisms in Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and their potential application in the bioremediation of heavy metal-phenanthrene co-contaminated sites. Chen C; Lei W; Lu M; Zhang J; Zhang Z; Luo C; Chen Y; Hong Q; Shen Z Environ Sci Pollut Res Int; 2016 Apr; 23(7):6861-72. PubMed ID: 26670028 [TBL] [Abstract][Full Text] [Related]
51. [Isolation, identification, and degrading characteristics of a high-efficient pyrene-degrading bacterial strain]. Zhong M; Zhang JQ; Wu XX; Yang F; Ma H; Chen LJ Ying Yong Sheng Tai Xue Bao; 2010 May; 21(5):1334-8. PubMed ID: 20707122 [TBL] [Abstract][Full Text] [Related]
52. Reductive degradation of pyrazine-2-carboxylate by a newly isolated Stenotrophomonas sp. HCU1. Rajini KS; Sasikala Ch; Ramana ChV Biodegradation; 2010 Sep; 21(5):801-13. PubMed ID: 20217461 [TBL] [Abstract][Full Text] [Related]
53. Molecular mechanisms of heavy metals resistance of Stenotrophomonas rhizophila JC1 by whole genome sequencing. Sun SC; Chen JX; Wang YG; Leng FF; Zhao J; Chen K; Zhang QC Arch Microbiol; 2021 Jul; 203(5):2699-2709. PubMed ID: 33715030 [TBL] [Abstract][Full Text] [Related]
54. Accumulation and tolerance to cadmium heavy metal ions and induction of 14-3-3 gene expression in response to cadmium exposure in Coprinus atramentarius. Xie C; Hu L; Yang Y; Liao D; Yang X Microbiol Res; 2017 Mar; 196():1-6. PubMed ID: 28164784 [TBL] [Abstract][Full Text] [Related]
55. Isolation of toxic metal-tolerant bacteria from soil and examination of their bioaugmentation potentiality by pot studies in cadmium- and lead-contaminated soil. Nath S; Deb B; Sharma I Int Microbiol; 2018 Jun; 21(1-2):35-45. PubMed ID: 30810918 [TBL] [Abstract][Full Text] [Related]
56. Isolation, identification, characterization, and evaluation of cadmium removal capacity of Enterobacter species. Abbas SZ; Rafatullah M; Ismail N; Lalung J J Basic Microbiol; 2014 Dec; 54(12):1279-87. PubMed ID: 24852724 [TBL] [Abstract][Full Text] [Related]
57. Biodegradation of p-nitrophenol and 4-chlorophenol by Stenotrophomonas sp. Liu Z; Yang C; Qiao C FEMS Microbiol Lett; 2007 Dec; 277(2):150-6. PubMed ID: 18031334 [TBL] [Abstract][Full Text] [Related]
58. [Mechanism of heavy-metal tolerance in Pseudomonas aeruginosa ZGKD2]. Zhang YX; Wang J; Chai TY; Zhang Q; Liu JG; Li X; Bai ZQ; Su ZJ Huan Jing Ke Xue; 2012 Oct; 33(10):3613-9. PubMed ID: 23233996 [TBL] [Abstract][Full Text] [Related]
59. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. Ndeddy Aka RJ; Babalola OO Int J Phytoremediation; 2016; 18(2):200-9. PubMed ID: 26503637 [TBL] [Abstract][Full Text] [Related]
60. Isolation of a methyl parathion-degrading strain Stenotrophomonas sp. SMSP-1 and cloning of the ophc2 gene. Shen YJ; Lu P; Mei H; Yu HJ; Hong Q; Li SP Biodegradation; 2010 Sep; 21(5):785-92. PubMed ID: 20182770 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]