BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17447789)

  • 1. Mechanisms of alkylpyrazine formation in a potato model system containing added glycine.
    Low MY; Parker JK; Mottram DS
    J Agric Food Chem; 2007 May; 55(10):4087-94. PubMed ID: 17447789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of citric acid and glycine addition on acrylamide and flavor in a potato model system.
    Low MY; Koutsidis G; Parker JK; Elmore JS; Dodson AT; Mottram DS
    J Agric Food Chem; 2006 Aug; 54(16):5976-83. PubMed ID: 16881704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations on the effect of amino acids on acrylamide, pyrazines, and Michael addition products in model systems.
    Koutsidis G; Simons SP; Thong YH; Haldoupis Y; Mojica-Lazaro J; Wedzicha BL; Mottram DS
    J Agric Food Chem; 2009 Oct; 57(19):9011-5. PubMed ID: 19739658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Addition of glycine reduces the content of acrylamide in cereal and potato products.
    Bråthen E; Kita A; Knutsen SH; Wicklund T
    J Agric Food Chem; 2005 Apr; 53(8):3259-64. PubMed ID: 15826086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of acrylamide generation in thermally processed model systems of asparagine and glucose with color formation, amounts of pyrazines formed, and antioxidative properties of extracts.
    Ehling S; Shibamoto T
    J Agric Food Chem; 2005 Jun; 53(12):4813-9. PubMed ID: 15941321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of storage practices on acrylamide formation during potato frying.
    De Wilde T; De Meulenaer B; Mestdagh F; Govaert Y; Vandeburie S; Ooghe W; Fraselle S; Demeulemeester K; Van Peteghem C; Calus A; Degroodt JM; Verhé R
    J Agric Food Chem; 2005 Aug; 53(16):6550-7. PubMed ID: 16076148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations of factors that influence the acrylamide content of heated foodstuffs.
    Rydberg P; Eriksson S; Tareke E; Karlsson P; Ehrenberg L; Törnqvist M
    J Agric Food Chem; 2003 Nov; 51(24):7012-8. PubMed ID: 14611163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection criteria for potato tubers to minimize acrylamide formation during frying.
    De Wilde T; De Meulenaer B; Mestdagh F; Govaert Y; Ooghe W; Fraselle S; Demeulemeester K; Van Peteghem C; Calus A; Degroodt JM; Verhé R
    J Agric Food Chem; 2006 Mar; 54(6):2199-205. PubMed ID: 16536596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acrylamide formation mechanism in heated foods.
    Zyzak DV; Sanders RA; Stojanovic M; Tallmadge DH; Eberhart BL; Ewald DK; Gruber DC; Morsch TR; Strothers MA; Rizzi GP; Villagran MD
    J Agric Food Chem; 2003 Jul; 51(16):4782-7. PubMed ID: 14705913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of harvest year on amino acids and sugars in potatoes and effect on acrylamide formation during frying.
    Viklund GA; Olsson KM; Sjöholm IM; Skog KI
    J Agric Food Chem; 2008 Aug; 56(15):6180-4. PubMed ID: 18624433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of formation of redox-active hydroxylated benzenes and pyrazine in 13C-labeled glycine/D-glucose model systems.
    Haffenden LJ; Yaylayan VA
    J Agric Food Chem; 2005 Dec; 53(25):9742-6. PubMed ID: 16332124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double Schiff base adducts of 2,3-butanedione with glycine: formation of pyrazine rings with the participation of amino acid carbon atoms.
    Guerra PV; Yaylayan VA
    J Agric Food Chem; 2012 Nov; 60(45):11440-5. PubMed ID: 23106172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted precursor addition to increase baked flavour in a low-acrylamide potato-based matrix.
    Kocadağlı T; Methven L; Kant A; Parker JK
    Food Chem; 2021 Mar; 339():128024. PubMed ID: 33152860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of acrylamide formation, sugars, and free asparagine in potatoes: a comparison of cultivars and farming systems.
    Amrein TM; Bachmann S; Noti A; Biedermann M; Barbosa MF; Biedermann-Brem S; Grob K; Keiser A; Realini P; Escher F; Amadó R
    J Agric Food Chem; 2003 Aug; 51(18):5556-60. PubMed ID: 12926914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of acrylamide and its precursors in potato, wheat, and rye model systems.
    Elmore JS; Koutsidis G; Dodson AT; Mottram DS; Wedzicha BL
    J Agric Food Chem; 2005 Feb; 53(4):1286-93. PubMed ID: 15713054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the alkylpyrazine composition of coffee using stable isotope dilution-gas chromatography-mass spectrometry (SIDA-GC-MS).
    Pickard S; Becker I; Merz KH; Richling E
    J Agric Food Chem; 2013 Jul; 61(26):6274-81. PubMed ID: 23745606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinetics of the inhibition of acrylamide by glycine in potato model systems.
    Zhu Y; Wang P; Wang F; Zhao M; Hu X; Chen F
    J Sci Food Agric; 2016 Jan; 96(2):548-54. PubMed ID: 25656956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of water on the formation of acrylamide in a potato model system.
    Mestdagh F; De Meulenaer B; Cucu T; Van Peteghem C
    Commun Agric Appl Biol Sci; 2006; 71(1):217-21. PubMed ID: 17191509
    [No Abstract]   [Full Text] [Related]  

  • 19. Addition of antioxidant of bamboo leaves (AOB) effectively reduces acrylamide formation in potato crisps and French fries.
    Zhang Y; Chen J; Zhang X; Wu X; Zhang Y
    J Agric Food Chem; 2007 Jan; 55(2):523-8. PubMed ID: 17227088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of thermal processing conditions on acrylamide generation and browning in a potato model system.
    Amrein TM; Limacher A; Conde-Petit B; Amado R; Escher F
    J Agric Food Chem; 2006 Aug; 54(16):5910-6. PubMed ID: 16881694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.