BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 17448490)

  • 1. Synthesis and size control of monodisperse copper nanoparticles by polyol method.
    Park BK; Jeong S; Kim D; Moon J; Lim S; Kim JS
    J Colloid Interface Sci; 2007 Jul; 311(2):417-24. PubMed ID: 17448490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsed sonoelectrochemical synthesis of size-controlled copper nanoparticles stabilized by poly(N-vinylpyrrolidone).
    Haas I; Shanmugam S; Gedanken A
    J Phys Chem B; 2006 Aug; 110(34):16947-52. PubMed ID: 16927986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of size-controlled and shaped copper nanoparticles.
    Mott D; Galkowski J; Wang L; Luo J; Zhong CJ
    Langmuir; 2007 May; 23(10):5740-5. PubMed ID: 17407333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions.
    Wu SH; Chen DH
    J Colloid Interface Sci; 2004 May; 273(1):165-9. PubMed ID: 15051447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel nanoparticles obtained by a modified polyol process: synthesis, characterization, and magnetic properties.
    Couto GG; Klein JJ; Schreiner WH; Mosca DH; de Oliveira AJ; Zarbin AJ
    J Colloid Interface Sci; 2007 Jul; 311(2):461-8. PubMed ID: 17433349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(allylamine)-stabilized colloidal copper nanoparticles: synthesis, morphology, and their surface-enhanced Raman scattering properties.
    Wang Y; Asefa T
    Langmuir; 2010 May; 26(10):7469-74. PubMed ID: 20148597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals.
    Joo J; Yu T; Kim YW; Park HM; Wu F; Zhang JZ; Hyeon T
    J Am Chem Soc; 2003 May; 125(21):6553-7. PubMed ID: 12785795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct synthesis and characterizations of fct-structured FePt nanoparticles using poly(N-vinyl-2-pyrrolidone) as a protecting agent.
    Iwamoto T; Matsumoto K; Matsushita T; Inokuchi M; Toshima N
    J Colloid Interface Sci; 2009 Aug; 336(2):879-88. PubMed ID: 19476950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetate- and thiol-capped monodisperse ruthenium nanoparticles: XPS, XAS, and HRTEM studies.
    Chakroune N; Viau G; Ammar S; Poul L; Veautier D; Chehimi MM; Mangeney C; Villain F; Fiévet F
    Langmuir; 2005 Jul; 21(15):6788-96. PubMed ID: 16008388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics.
    Lee Y; Choi JR; Lee KJ; Stott NE; Kim D
    Nanotechnology; 2008 Oct; 19(41):415604. PubMed ID: 21832649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the agglomeration of anisotropic Ru nanoparticles by the microwave-polyol process.
    Harpeness R; Peng Z; Liu X; Pol VG; Koltypin Y; Gedanken A
    J Colloid Interface Sci; 2005 Jul; 287(2):678-84. PubMed ID: 15925637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green synthesis and characterization of polymer-stabilized silver nanoparticles.
    Medina-Ramirez I; Bashir S; Luo Z; Liu JL
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):185-91. PubMed ID: 19539451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size effect in reactivity of copper nanoparticles to carbon tetrachloride degradation.
    Liou YH; Lo SL; Lin CJ
    Water Res; 2007 Apr; 41(8):1705-12. PubMed ID: 17337030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection.
    Kim D; Jeong S; Moon J
    Nanotechnology; 2006 Aug; 17(16):4019-24. PubMed ID: 21727531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles.
    Sun S; Zeng H; Robinson DB; Raoux S; Rice PM; Wang SX; Li G
    J Am Chem Soc; 2004 Jan; 126(1):273-9. PubMed ID: 14709092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigations into sulfobetaine-stabilized Cu nanoparticle formation: toward development of a microfluidic synthesis.
    Song Y; Doomes EE; Prindle J; Tittsworth R; Hormes J; Kumar CS
    J Phys Chem B; 2005 May; 109(19):9330-8. PubMed ID: 16852117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-assisted polyol synthesis of CuInTe2 and CuInSe2 nanoparticles.
    Grisaru H; Palchik O; Gedanken A; Palchik V; Slifkin MA; Weiss AM
    Inorg Chem; 2003 Nov; 42(22):7148-55. PubMed ID: 14577783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of process parameters on the Liquid Flame Spray generated titania nanoparticles.
    Aromaa M; Keskinen H; Mäkelä JM
    Biomol Eng; 2007 Nov; 24(5):543-8. PubMed ID: 17950664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticulate copper--routes towards oxidative stability.
    Engels V; Benaskar F; Jefferson DA; Johnson BF; Wheatley AE
    Dalton Trans; 2010 Jul; 39(28):6496-502. PubMed ID: 20567754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical synthesis and structural characterization of highly disordered N colloidal nanoparticles.
    Winnischofer H; Rocha TC; Nunes WC; Socolovsky LM; Knobel M; Zanchet D
    ACS Nano; 2008 Jun; 2(6):1313-9. PubMed ID: 19206350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.