BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 17448901)

  • 1. Inhibition of protein tyrosine phosphatases by amino acid, peptide, and protein hydroperoxides: potential modulation of cell signaling by protein oxidation products.
    Gracanin M; Davies MJ
    Free Radic Biol Med; 2007 May; 42(10):1543-51. PubMed ID: 17448901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of cathepsins and related proteases by amino acid, peptide, and protein hydroperoxides.
    Headlam HA; Gracanin M; Rodgers KJ; Davies MJ
    Free Radic Biol Med; 2006 May; 40(9):1539-48. PubMed ID: 16632114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation.
    Denu JM; Tanner KG
    Biochemistry; 1998 Apr; 37(16):5633-42. PubMed ID: 9548949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular effects of peptide and protein hydroperoxides.
    Rahmanto AS; Morgan PE; Hawkins CL; Davies MJ
    Free Radic Biol Med; 2010 Apr; 48(8):1071-8. PubMed ID: 20109544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular effects of photogenerated oxidants and long-lived, reactive, hydroperoxide photoproducts.
    Rahmanto AS; Morgan PE; Hawkins CL; Davies MJ
    Free Radic Biol Med; 2010 Nov; 49(10):1505-15. PubMed ID: 20708682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid, peptide, and protein hydroperoxides and their decomposition products modify the activity of the 26S proteasome.
    Gracanin M; Lam MA; Morgan PE; Rodgers KJ; Hawkins CL; Davies MJ
    Free Radic Biol Med; 2011 Jan; 50(2):389-99. PubMed ID: 21111806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protective mechanisms against peptide and protein peroxides generated by singlet oxygen.
    Morgan PE; Dean RT; Davies MJ
    Free Radic Biol Med; 2004 Feb; 36(4):484-96. PubMed ID: 14975451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation, detection, and quantification of hydroperoxides formed at side-chain and backbone sites on amino acids, peptides, and proteins.
    Morgan PE; Pattison DI; Hawkins CL; Davies MJ
    Free Radic Biol Med; 2008 Nov; 45(9):1279-89. PubMed ID: 18762246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation sensitivity of the catalytic cysteine of the protein-tyrosine phosphatases SHP-1 and SHP-2.
    Weibrecht I; Böhmer SA; Dagnell M; Kappert K; Ostman A; Böhmer FD
    Free Radic Biol Med; 2007 Jul; 43(1):100-10. PubMed ID: 17561098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox regulation of protein-tyrosine phosphatases.
    den Hertog J; Groen A; van der Wijk T
    Arch Biochem Biophys; 2005 Feb; 434(1):11-5. PubMed ID: 15629103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Singlet-oxygen-mediated amino acid and protein oxidation: formation of tryptophan peroxides and decomposition products.
    Gracanin M; Hawkins CL; Pattison DI; Davies MJ
    Free Radic Biol Med; 2009 Jul; 47(1):92-102. PubMed ID: 19375501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3.
    Peskin AV; Cox AG; Nagy P; Morgan PE; Hampton MB; Davies MJ; Winterbourn CC
    Biochem J; 2010 Dec; 432(2):313-21. PubMed ID: 20840079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone H1- and other protein- and amino acid-hydroperoxides can give rise to free radicals which oxidize DNA.
    Luxford C; Morin B; Dean RT; Davies MJ
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):125-34. PubMed ID: 10548542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a modified in-gel assay to identify protein tyrosine phosphatases that are oxidized and inactivated in vivo.
    Meng TC; Hsu SF; Tonks NK
    Methods; 2005 Jan; 35(1):28-36. PubMed ID: 15588983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calpain-mediated degradation of reversibly oxidized protein-tyrosine phosphatase 1B.
    Trümpler A; Schlott B; Herrlich P; Greer PA; Böhmer FD
    FEBS J; 2009 Oct; 276(19):5622-33. PubMed ID: 19712109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic inactivation of protein tyrosine phosphatase CD45 and protein tyrosine phosphatase 1B by polyaromatic quinones.
    Wang Q; Dubé D; Friesen RW; LeRiche TG; Bateman KP; Trimble L; Sanghara J; Pollex R; Ramachandran C; Gresser MJ; Huang Z
    Biochemistry; 2004 Apr; 43(14):4294-303. PubMed ID: 15065873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide.
    Yang J; Groen A; Lemeer S; Jans A; Slijper M; Roe SM; den Hertog J; Barford D
    Biochemistry; 2007 Jan; 46(3):709-19. PubMed ID: 17223692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox regulation of the protein tyrosine phosphatase PTP1B in cancer cells.
    Lou YW; Chen YY; Hsu SF; Chen RK; Lee CL; Khoo KH; Tonks NK; Meng TC
    FEBS J; 2008 Jan; 275(1):69-88. PubMed ID: 18067579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein tyrosine phosphatases as targets of the combined insulinomimetic effects of zinc and oxidants.
    Haase H; Maret W
    Biometals; 2005 Aug; 18(4):333-8. PubMed ID: 16158225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.