These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 17449044)
1. High-performance liquid chromatographic fingerprint analysis for different origins of sea buckthorn berries. Chen C; Zhang H; Xiao W; Yong ZP; Bai N J Chromatogr A; 2007 Jun; 1154(1-2):250-9. PubMed ID: 17449044 [TBL] [Abstract][Full Text] [Related]
2. UHPLC/PDA-ESI/MS analysis of the main berry and leaf flavonol glycosides from different Carpathian Hippophaë rhamnoides L. varieties. Pop RM; Socaciu C; Pintea A; Buzoianu AD; Sanders MG; Gruppen H; Vincken JP Phytochem Anal; 2013; 24(5):484-92. PubMed ID: 24038430 [TBL] [Abstract][Full Text] [Related]
3. Structural investigations of flavonol glycosides from sea buckthorn (Hippophaë rhamnoides) pomace by NMR spectroscopy and HPLC-ESI-MS(n). Rösch D; Krumbein A; Mügge C; Kroh LW J Agric Food Chem; 2004 Jun; 52(13):4039-46. PubMed ID: 15212446 [TBL] [Abstract][Full Text] [Related]
4. On-line hyphenation of centrifugal partition chromatography and high pressure liquid chromatography for the fractionation of flavonoids from Hippophaë rhamnoides L. berries. Michel T; Destandau E; Elfakir C J Chromatogr A; 2011 Sep; 1218(36):6173-8. PubMed ID: 21315362 [TBL] [Abstract][Full Text] [Related]
5. HPLC-DAD-MS/MS profiling of antioxidant flavonoid glycosides in sea buckthorn (Hippophae rhamnoides L.) seeds. Arimboor R; Arumughan C Int J Food Sci Nutr; 2012 Sep; 63(6):730-8. PubMed ID: 22264152 [TBL] [Abstract][Full Text] [Related]
6. Role of Flavonols and Proanthocyanidins in the Sensory Quality of Sea Buckthorn (Hippophaë rhamnoides L.) Berries. Ma X; Yang W; Laaksonen O; Nylander M; Kallio H; Yang B J Agric Food Chem; 2017 Nov; 65(45):9871-9879. PubMed ID: 29035528 [TBL] [Abstract][Full Text] [Related]
7. Effect of different organic farming methods on the phenolic composition of sea buckthorn berries. Heinäaho M; Hagerman AE; Julkunen-Tiitto R J Agric Food Chem; 2009 Mar; 57(5):1940-7. PubMed ID: 19219991 [TBL] [Abstract][Full Text] [Related]
8. Flavonol glycosides of sea buckthorn (Hippophaë rhamnoides ssp. sinensis) and lingonberry (Vaccinium vitis-idaea) are bioavailable in humans and monoglucuronidated for excretion. Lehtonen HM; Lehtinen O; Suomela JP; Viitanen M; Kallio H J Agric Food Chem; 2010 Jan; 58(1):620-7. PubMed ID: 20050706 [TBL] [Abstract][Full Text] [Related]
9. UPLC-PDA-Q/TOF-MS profiling of phenolic and carotenoid compounds and their influence on anticholinergic potential for AChE and BuChE inhibition and on-line antioxidant activity of selected Hippophaë rhamnoides L. cultivars. Tkacz K; Wojdyło A; Turkiewicz IP; Ferreres F; Moreno DA; Nowicka P Food Chem; 2020 Mar; 309():125766. PubMed ID: 31718836 [TBL] [Abstract][Full Text] [Related]
10. [HPLC investigation of antioxidant components in Solidago herba]. Apáti P; Houghton PJ; Kéry A Acta Pharm Hung; 2004; 74(4):223-31. PubMed ID: 16316050 [TBL] [Abstract][Full Text] [Related]
11. Inositols and methylinositols in sea buckthorn (Hippophaë rhamnoides) berries. Kallio H; Lassila M; Järvenpää E; Haraldsson GG; Jonsdottir S; Yang B J Chromatogr B Analyt Technol Biomed Life Sci; 2009 May; 877(14-15):1426-32. PubMed ID: 19345619 [TBL] [Abstract][Full Text] [Related]
13. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophaë rhamnoides L.) berries. Guo R; Guo X; Li T; Fu X; Liu RH Food Chem; 2017 Apr; 221():997-1003. PubMed ID: 27979305 [TBL] [Abstract][Full Text] [Related]
14. Secoisolariciresinol and matairesinol of sea buckthorn (Hippophaë rhamnoides L.) berries of different subspecies and harvesting times. Yang B; Linko AM; Adlercreutz H; Kallio H J Agric Food Chem; 2006 Oct; 54(21):8065-70. PubMed ID: 17032010 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous determination of catechin, rutin, quercetin kaempferol and isorhamnetin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD. Zu Y; Li C; Fu Y; Zhao C J Pharm Biomed Anal; 2006 Jun; 41(3):714-9. PubMed ID: 16520013 [TBL] [Abstract][Full Text] [Related]
16. Flavonol glycosides in berries of two major subspecies of sea buckthorn (Hippophaë rhamnoides L.) and influence of growth sites. Ma X; Laaksonen O; Zheng J; Yang W; Trépanier M; Kallio H; Yang B Food Chem; 2016 Jun; 200():189-98. PubMed ID: 26830578 [TBL] [Abstract][Full Text] [Related]
17. ¹H NMR spectroscopy reveals the effect of genotype and growth conditions on composition of sea buckthorn (Hippophaë rhamnoides L.) berries. Kortesniemi M; Sinkkonen J; Yang B; Kallio H Food Chem; 2014 Mar; 147():138-46. PubMed ID: 24206697 [TBL] [Abstract][Full Text] [Related]
18. Isolation and identification of sea buckthorn (Hippophae rhamnoides) phenolics with antioxidant activity and α-glucosidase inhibitory effect. Kim JS; Kwon YS; Sa YJ; Kim MJ J Agric Food Chem; 2011 Jan; 59(1):138-44. PubMed ID: 21142100 [TBL] [Abstract][Full Text] [Related]
19. Analysis of Lipophilic and Hydrophilic Bioactive Compounds Content in Sea Buckthorn (Hippophaë rhamnoides L.) Berries. Teleszko M; Wojdyło A; Rudzińska M; Oszmiański J; Golis T J Agric Food Chem; 2015 Apr; 63(16):4120-9. PubMed ID: 25893239 [TBL] [Abstract][Full Text] [Related]
20. Quality evaluation of Hypericum japonicum by using high-performance liquid chromatography coupled with photodiode array detector and electrospray ionization tandem mass spectrometry. Gao WN; Luo JG; Kong LY Biomed Chromatogr; 2009 Sep; 23(9):1022-30. PubMed ID: 19358152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]