These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 17449639)

  • 1. Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil.
    Ishimaru Y; Kim S; Tsukamoto T; Oki H; Kobayashi T; Watanabe S; Matsuhashi S; Takahashi M; Nakanishi H; Mori S; Nishizawa NK
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7373-8. PubMed ID: 17449639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil.
    Masuda H; Shimochi E; Hamada T; Senoura T; Kobayashi T; Aung MS; Ishimaru Y; Ogo Y; Nakanishi H; Nishizawa NK
    PLoS One; 2017; 12(3):e0173441. PubMed ID: 28278216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil].
    Ishimaru Y; Nishizawa NK
    Tanpakushitsu Kakusan Koso; 2008 Jan; 53(1):65-71. PubMed ID: 18186305
    [No Abstract]   [Full Text] [Related]  

  • 4. Enhancement of Iron Acquisition in Rice by the Mugineic Acid Synthase Gene With Ferric Iron Reductase Gene and
    Masuda H; Aung MS; Kobayashi T; Hamada T; Nishizawa NK
    Front Plant Sci; 2019; 10():1179. PubMed ID: 31681346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+.
    Ishimaru Y; Suzuki M; Tsukamoto T; Suzuki K; Nakazono M; Kobayashi T; Wada Y; Watanabe S; Matsuhashi S; Takahashi M; Nakanishi H; Mori S; Nishizawa NK
    Plant J; 2006 Feb; 45(3):335-46. PubMed ID: 16412081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2.
    Vasconcelos M; Eckert H; Arahana V; Graef G; Grusak MA; Clemente T
    Planta; 2006 Oct; 224(5):1116-28. PubMed ID: 16741749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Enhancement of iron Deficiency Tolerance and Iron Accumulation in Rice by Combining the Knockdown of OsHRZ Ubiquitin Ligases with the Introduction of Engineered Ferric-chelate Reductase.
    Kobayashi T; Maeda K; Suzuki Y; Nishizawa NK
    Rice (N Y); 2022 Oct; 15(1):54. PubMed ID: 36315339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of peanut Iron Regulated Transporter 1 in tobacco and rice plants confers improved iron nutrition.
    Xiong H; Guo X; Kobayashi T; Kakei Y; Nakanishi H; Nozoye T; Zhang L; Shen H; Qiu W; Nishizawa NK; Zuo Y
    Plant Physiol Biochem; 2014 Jul; 80():83-9. PubMed ID: 24727792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil.
    Ogo Y; Itai RN; Kobayashi T; Aung MS; Nakanishi H; Nishizawa NK
    Plant Mol Biol; 2011 Apr; 75(6):593-605. PubMed ID: 21331630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Vacuolar Manganese Transporter MTP8 Determines Tolerance to Iron Deficiency-Induced Chlorosis in Arabidopsis.
    Eroglu S; Meier B; von Wirén N; Peiter E
    Plant Physiol; 2016 Feb; 170(2):1030-45. PubMed ID: 26668333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize.
    Ding H; Duan L; Wu H; Yang R; Ling H; Li WX; Zhang F
    Physiol Plant; 2009 Jul; 136(3):274-83. PubMed ID: 19453500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes.
    Takahashi M; Nakanishi H; Kawasaki S; Nishizawa NK; Mori S
    Nat Biotechnol; 2001 May; 19(5):466-9. PubMed ID: 11329018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Small GTPase, OsRab6a, is Involved in the Regulation of Iron Homeostasis in Rice.
    Yang A; Zhang WH
    Plant Cell Physiol; 2016 Jun; 57(6):1271-80. PubMed ID: 27257291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of AtFRO6 in transgenic tobacco enhances ferric chelate reductase activity in leaves and increases tolerance to iron-deficiency chlorosis.
    Li LY; Cai QY; Yu DS; Guo CH
    Mol Biol Rep; 2011 Aug; 38(6):3605-13. PubMed ID: 21104018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron uptake, translocation and regulation in rice.
    Guo MX; Zheng L; Zhao XS
    Yi Chuan; 2017 May; 39(5):388-395. PubMed ID: 28487271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control.
    Connolly EL; Campbell NH; Grotz N; Prichard CL; Guerinot ML
    Plant Physiol; 2003 Nov; 133(3):1102-10. PubMed ID: 14526117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medicago truncatula ecotypes A17 and R108 differed in their response to iron deficiency.
    Li G; Wang B; Tian Q; Wang T; Zhang WH
    J Plant Physiol; 2014 May; 171(8):639-47. PubMed ID: 24709157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes.
    Kobayashi T; Itai RN; Ogo Y; Kakei Y; Nakanishi H; Takahashi M; Nishizawa NK
    Plant J; 2009 Dec; 60(6):948-61. PubMed ID: 19737364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced levels of nicotianamine promote iron accumulation and tolerance to calcareous soil in soybean.
    Nozoye T; Kim S; Kakei Y; Takahashi M; Nakanishi H; Nishizawa NK
    Biosci Biotechnol Biochem; 2014; 78(10):1677-84. PubMed ID: 25047240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Phytosiderophore Efflux Transporter TOM2 Is Involved in Metal Transport in Rice.
    Nozoye T; Nagasaka S; Kobayashi T; Sato Y; Uozumi N; Nakanishi H; Nishizawa NK
    J Biol Chem; 2015 Nov; 290(46):27688-99. PubMed ID: 26432636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.