BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17449705)

  • 21. Real-time PCR-based methods for detection of Mycobacterium avium subsp. paratuberculosis in water and milk.
    Rodríguez-Lázaro D; D'Agostino M; Herrewegh A; Pla M; Cook N; Ikonomopoulos J
    Int J Food Microbiol; 2005 May; 101(1):93-104. PubMed ID: 15878410
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a real-time PCR assay targeting the sporulation gene, spo0A, for the enumeration of thermophilic bacilli in milk powder.
    Rueckert A; Ronimus RS; Morgan HW
    Food Microbiol; 2006 May; 23(3):220-30. PubMed ID: 16943008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of Clostridium tyrobutyricum as the causative agent of late blowing in cheese by species-specific PCR amplification.
    Klijn N; Nieuwenhof FF; Hoolwerf JD; van der Waals CB; Weerkamp AH
    Appl Environ Microbiol; 1995 Aug; 61(8):2919-24. PubMed ID: 7487024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PCR-based detection of enterotoxigenic Staphylococcus aureus in the early stages of raw milk cheese making.
    Ercolini D; Blaiotta G; Fusco V; Coppola S
    J Appl Microbiol; 2004; 96(5):1090-6. PubMed ID: 15078526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of interference to conventional and real-time PCR for detection and quantification of fungi in dust.
    Keswani J; Kashon ML; Chen BT
    J Environ Monit; 2005 Apr; 7(4):311-8. PubMed ID: 15798797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of high pressure processing for controlling Clostridium tyrobutyricum and late blowing defect on semi-hard cheese.
    Ávila M; Gómez-Torres N; Delgado D; Gaya P; Garde S
    Food Microbiol; 2016 Dec; 60():165-73. PubMed ID: 27554159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid detection of viable bacteria by nested polymerase chain reaction via long DNA amplification after ethidium monoazide treatment.
    Soejima T; Schlitt-Dittrich F; Yoshida S
    Anal Biochem; 2011 Nov; 418(2):286-94. PubMed ID: 21771580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of different premilking manual teat-cleaning methods on bacterial spores in milk.
    Magnusson M; Christiansson A; Svensson B; Kolstrup C
    J Dairy Sci; 2006 Oct; 89(10):3866-75. PubMed ID: 16960062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomic approach to studying nutritional requirements of Clostridium tyrobutyricum and other Clostridia causing late blowing defects.
    Storari M; Kulli S; Wüthrich D; Bruggmann R; Berthoud H; Arias-Roth E
    Food Microbiol; 2016 Oct; 59():213-23. PubMed ID: 27375262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time multiplex polymerase chain reaction assay for rapid detection of Clostridium difficile toxin-encoding strains.
    Houser BA; Hattel AL; Jayarao BM
    Foodborne Pathog Dis; 2010 Jun; 7(6):719-26. PubMed ID: 20113206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development and validation of PCR primers to assess the diversity of Clostridium spp. in cheese by temporal temperature gradient gel electrophoresis.
    Le Bourhis AG; Saunier K; Doré J; Carlier JP; Chamba JF; Popoff MR; Tholozan JL
    Appl Environ Microbiol; 2005 Jan; 71(1):29-38. PubMed ID: 15640166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of Clostridium tyrobutyricum removal through natural creaming of milk: A microscopy study.
    D'Incecco P; Faoro F; Silvetti T; Schrader K; Pellegrino L
    J Dairy Sci; 2015 Aug; 98(8):5164-72. PubMed ID: 26051312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of fluorescent CTP1L endolysin cell wall-binding domain to study the evolution of Clostridium tyrobutyricum during cheese ripening.
    Gómez-Torres N; Ávila M; Narbad A; Mayer MJ; Garde S
    Food Microbiol; 2019 Apr; 78():11-17. PubMed ID: 30497591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enumeration of clostridia in goat milk using an optimized membrane filtration technique.
    Reindl A; Dzieciol M; Hein I; Wagner M; Zangerl P
    J Dairy Sci; 2014 Oct; 97(10):6036-45. PubMed ID: 25129496
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantification by real-time PCR of Lactococcus lactis subsp. cremoris in milk fermented by a mixed culture.
    Grattepanche F; Lacroix C; Audet P; Lapointe G
    Appl Microbiol Biotechnol; 2005 Jan; 66(4):414-21. PubMed ID: 15599522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of copper on germination, growth and sporulation of Clostridium tyrobutyricum.
    Mato Rodriguez L; Alatossava T
    Food Microbiol; 2010 May; 27(3):434-7. PubMed ID: 20227610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A PCR method for detection of bifidobacteria in raw milk and raw milk cheese: comparison with culture-based methods.
    Delcenserie V; Bechoux N; China B; Daube G; Gavini F
    J Microbiol Methods; 2005 Apr; 61(1):55-67. PubMed ID: 15676196
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Use of real-time PCR for quantitative assessment of lactic acid bacteria and bifidobacteria in dairy products].
    Zelenaia LB; Kovalenko NK; Oblap RV; Hovak NB; Golubets RA
    Mikrobiol Z; 2012; 74(1):14-9. PubMed ID: 22545439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-time polymerase chain reaction assays for the detection of members of the Mycoplasma mycoides cluster.
    Fitzmaurice J; Sewell M; Manso-Silván L; Thiaucourt F; McDonald WL; O'Keefe JS
    N Z Vet J; 2008 Feb; 56(1):40-7. PubMed ID: 18322559
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target.
    O' Grady J; Sedano-Balbás S; Maher M; Smith T; Barry T
    Food Microbiol; 2008 Feb; 25(1):75-84. PubMed ID: 17993379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.