These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 17449728)

  • 1. The 51-63 base pair of tRNA confers specificity for binding by EF-Tu.
    Sanderson LE; Uhlenbeck OC
    RNA; 2007 Jun; 13(6):835-40. PubMed ID: 17449728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The tRNA specificity of Thermus thermophilus EF-Tu.
    Asahara H; Uhlenbeck OC
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3499-504. PubMed ID: 11891293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the sequence specificity of tRNA binding to elongation factor Tu using tRNA mutagenesis.
    Schrader JM; Chapman SJ; Uhlenbeck OC
    J Mol Biol; 2009 Mar; 386(5):1255-64. PubMed ID: 19452597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of thermodynamically relevant interactions between EF-Tu and backbone elements of tRNA.
    Pleiss JA; Uhlenbeck OC
    J Mol Biol; 2001 May; 308(5):895-905. PubMed ID: 11352580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The affinity of elongation factor Tu for an aminoacyl-tRNA is modulated by the esterified amino acid.
    Dale T; Sanderson LE; Uhlenbeck OC
    Biochemistry; 2004 May; 43(20):6159-66. PubMed ID: 15147200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is the sequence-specific binding of aminoacyl-tRNAs by EF-Tu universal among bacteria?
    Schrader JM; Uhlenbeck OC
    Nucleic Acids Res; 2011 Dec; 39(22):9746-58. PubMed ID: 21893586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the specificity of bacterial elongation factor Tu for different tRNAs.
    Sanderson LE; Uhlenbeck OC
    Biochemistry; 2007 May; 46(21):6194-200. PubMed ID: 17489561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the binding affinities of misacylated tRNAs for Thermus thermophilus EF-Tu.GTP.
    Asahara H; Uhlenbeck OC
    Biochemistry; 2005 Aug; 44(33):11254-61. PubMed ID: 16101309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional consequences of T-stem mutations in E. coli tRNAThrUGU in vitro and in vivo.
    Saks ME; Sanderson LE; Choi DS; Crosby CM; Uhlenbeck OC
    RNA; 2011 Jun; 17(6):1038-47. PubMed ID: 21527672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis of Thermus thermophilus elongation factor Tu. Replacement of His85, Asp81 and Arg300.
    Zeidler W; Egle C; Ribeiro S; Wagner A; Katunin V; Kreutzer R; Rodnina M; Wintermeyer W; Sprinzl M
    Eur J Biochem; 1995 May; 229(3):596-604. PubMed ID: 7758452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GE2270A-resistant mutations in elongation factor Tu allow productive aminoacyl-tRNA binding to EF-Tu.GTP.GE2270A complexes.
    Zuurmond AM; Martien de Graaf J; Olsthoorn-Tieleman LN; van Duyl BY; Mörhle VG; Jurnak F; Mesters JR; Hilgenfeld R; Kraal B
    J Mol Biol; 2000 Dec; 304(5):995-1005. PubMed ID: 11124042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation.
    LaRiviere FJ; Wolfson AD; Uhlenbeck OC
    Science; 2001 Oct; 294(5540):165-8. PubMed ID: 11588263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed mutagenesis identifies amino acid residues involved in elongation factor Tu binding to yeast Phe-tRNAPhe.
    Sanderson LE; Uhlenbeck OC
    J Mol Biol; 2007 Apr; 368(1):119-30. PubMed ID: 17328911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antideterminants present in minihelix(Sec) hinder its recognition by prokaryotic elongation factor Tu.
    Rudinger J; Hillenbrandt R; Sprinzl M; Giegé R
    EMBO J; 1996 Feb; 15(3):650-7. PubMed ID: 8599948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of a novel antibacterial toxin that exploits elongation factor Tu to cleave specific transfer RNAs.
    Michalska K; Gucinski GC; Garza-Sánchez F; Johnson PM; Stols LM; Eschenfeldt WH; Babnigg G; Low DA; Goulding CW; Joachimiak A; Hayes CS
    Nucleic Acids Res; 2017 Sep; 45(17):10306-10320. PubMed ID: 28973472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defining a smaller RNA substrate for elongation factor Tu.
    Nazarenko IA; Uhlenbeck OC
    Biochemistry; 1995 Feb; 34(8):2545-52. PubMed ID: 7532998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. tmRNA from Thermus thermophilus. Interaction with alanyl-tRNA synthetase and elongation factor Tu.
    Stepanov VG; Nyborg J
    Eur J Biochem; 2003 Feb; 270(3):463-75. PubMed ID: 12542696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural elements defining elongation factor Tu mediated suppression of codon ambiguity.
    Roy H; Becker HD; Mazauric MH; Kern D
    Nucleic Acids Res; 2007; 35(10):3420-30. PubMed ID: 17478519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.