These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 17450122)

  • 1. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells.
    Kovtun IV; Liu Y; Bjoras M; Klungland A; Wilson SH; McMurray CT
    Nature; 2007 May; 447(7143):447-52. PubMed ID: 17450122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice.
    Goula AV; Berquist BR; Wilson DM; Wheeler VC; Trottier Y; Merienne K
    PLoS Genet; 2009 Dec; 5(12):e1000749. PubMed ID: 19997493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cockayne syndrome B protein antagonizes OGG1 in modulating CAG repeat length in vivo.
    Kovtun IV; Johnson KO; McMurray CT
    Aging (Albany NY); 2011 May; 3(5):509-14. PubMed ID: 21566259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidized dNTPs and the OGG1 and MUTYH DNA glycosylases combine to induce CAG/CTG repeat instability.
    Cilli P; Ventura I; Minoprio A; Meccia E; Martire A; Wilson SH; Bignami M; Mazzei F
    Nucleic Acids Res; 2016 Jun; 44(11):5190-203. PubMed ID: 26980281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The recombination protein RAD52 cooperates with the excision repair protein OGG1 for the repair of oxidative lesions in mammalian cells.
    de Souza-Pinto NC; Maynard S; Hashiguchi K; Hu J; Muftuoglu M; Bohr VA
    Mol Cell Biol; 2009 Aug; 29(16):4441-54. PubMed ID: 19506022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CUX2 protein functions as an accessory factor in the repair of oxidative DNA damage.
    Pal R; Ramdzan ZM; Kaur S; Duquette PM; Marcotte R; Leduy L; Davoudi S; Lamarche-Vane N; Iulianella A; Nepveu A
    J Biol Chem; 2015 Sep; 290(37):22520-31. PubMed ID: 26221032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incidence and persistence of 8-oxo-7,8-dihydroguanine within a hairpin intermediate exacerbates a toxic oxidation cycle associated with trinucleotide repeat expansion.
    Jarem DA; Wilson NR; Schermerhorn KM; Delaney S
    DNA Repair (Amst); 2011 Aug; 10(8):887-96. PubMed ID: 21727036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neil1 is a genetic modifier of somatic and germline CAG trinucleotide repeat instability in R6/1 mice.
    Møllersen L; Rowe AD; Illuzzi JL; Hildrestrand GA; Gerhold KJ; Tveterås L; Bjølgerud A; Wilson DM; Bjørås M; Klungland A
    Hum Mol Genet; 2012 Nov; 21(22):4939-47. PubMed ID: 22914735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-dependent DNA damage and repair in a trinucleotide repeat sequence.
    Jarem DA; Wilson NR; Delaney S
    Biochemistry; 2009 Jul; 48(28):6655-63. PubMed ID: 19527055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The basal levels of 8-oxoG and other oxidative modifications in intact mitochondrial DNA are low even in repair-deficient (Ogg1(-/-)/Csb(-/-)) mice.
    Trapp C; McCullough AK; Epe B
    Mutat Res; 2007 Dec; 625(1-2):155-63. PubMed ID: 17675188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initiation of 8-oxoguanine base excision repair within trinucleotide tandem repeats.
    Derevyanko AG; Endutkin AV; Ishchenko AA; Saparbaev MK; Zharkov DO
    Biochemistry (Mosc); 2012 Mar; 77(3):270-9. PubMed ID: 22803944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA repair in the trinucleotide repeat disorders.
    Jones L; Houlden H; Tabrizi SJ
    Lancet Neurol; 2017 Jan; 16(1):88-96. PubMed ID: 27979358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2.
    Hailer MK; Slade PG; Martin BD; Rosenquist TA; Sugden KD
    DNA Repair (Amst); 2005 Jan; 4(1):41-50. PubMed ID: 15533836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Base excision repair of oxidative DNA damage coupled with removal of a CAG repeat hairpin attenuates trinucleotide repeat expansion.
    Xu M; Lai Y; Torner J; Zhang Y; Zhang Z; Liu Y
    Nucleic Acids Res; 2014 Apr; 42(6):3675-91. PubMed ID: 24423876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of a common OGG1 variant by TNF-alpha in mammalian cells.
    Morreall J; Limpose K; Sheppard C; Kow YW; Werner E; Doetsch PW
    DNA Repair (Amst); 2015 Feb; 26():15-22. PubMed ID: 25534136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hOGG1 Ser326Cys polymorphism and Huntington's disease.
    Coppedè F; Migheli F; Ceravolo R; Bregant E; Rocchi A; Petrozzi L; Unti E; Lonigro R; Siciliano G; Migliore L
    Toxicology; 2010 Dec; 278(2):199-203. PubMed ID: 19857538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity of OGG1 variants in the repair of pro-oxidant-induced 8-oxo-2'-deoxyguanosine.
    Smart DJ; Chipman JK; Hodges NJ
    DNA Repair (Amst); 2006 Nov; 5(11):1337-45. PubMed ID: 16861056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related length variability of polymorphic CAG repeats.
    Sanchez-Contreras M; Cardozo-Pelaez F
    DNA Repair (Amst); 2017 Jan; 49():26-32. PubMed ID: 27865706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of DNA glycosylase activity of OGG1 by NEIL1: functional collaboration between two human DNA glycosylases.
    Mokkapati SK; Wiederhold L; Hazra TK; Mitra S
    Biochemistry; 2004 Sep; 43(36):11596-604. PubMed ID: 15350146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct visualization of repair of oxidative damage by OGG1 in the nuclei of live cells.
    Zielinska A; Davies OT; Meldrum RA; Hodges NJ
    J Biochem Mol Toxicol; 2011; 25(1):1-7. PubMed ID: 21322094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.