These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 17450302)
21. Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Phillips RL; Zak DR; Holmes WE; White DC Oecologia; 2002 Apr; 131(2):236-244. PubMed ID: 28547691 [TBL] [Abstract][Full Text] [Related]
22. Wood properties of trembling aspen and paper birch after 5 years of exposure to elevated concentrations of CO(2) and O(3). Kostiainen K; Kaakinen S; Warsta E; Kubiske ME; Nelson ND; Sober J; Karnosky DF; Saranpää P; Vapaavuori E Tree Physiol; 2008 May; 28(5):805-13. PubMed ID: 18316312 [TBL] [Abstract][Full Text] [Related]
23. Tropospheric O(3) compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO(2). King JS; Kubiske ME; Pregitzer KS; Hendrey GR; McDonald EP; Giardina CP; Quinn VS; Karnosky DF New Phytol; 2005 Dec; 168(3):623-36. PubMed ID: 16313645 [TBL] [Abstract][Full Text] [Related]
24. Effects of elevated concentrations of ozone and carbon dioxide on the electrical impedance of leaves of silver birch (Betula pendula) clones. Repo T; Oksanen E; Vapaavuori E Tree Physiol; 2004 Jul; 24(7):833-43. PubMed ID: 15123455 [TBL] [Abstract][Full Text] [Related]
25. Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of CO2 and O3 in the field. Riikonen J; Holopainen T; Oksanen E; Vapaavuori E Tree Physiol; 2005 May; 25(5):621-32. PubMed ID: 15741148 [TBL] [Abstract][Full Text] [Related]
27. Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems. Zak DR; Holmes WE; Pregitzer KS Ecology; 2007 Oct; 88(10):2630-9. PubMed ID: 18027765 [TBL] [Abstract][Full Text] [Related]
28. Combination treatment of elevated UVB radiation, CO2 and temperature has little effect on silver birch (Betula pendula) growth and phytochemistry. Lavola A; Nybakken L; Rousi M; Pusenius J; Petrelius M; Kellomäki S; Julkunen-Tiitto R Physiol Plant; 2013 Dec; 149(4):499-514. PubMed ID: 23496144 [TBL] [Abstract][Full Text] [Related]
29. Effects of elevated carbon dioxide and ozone on foliar proanthocyanidins in Betula platyphylla, Betula ermanii, and Fagus crenata seedlings. Karonen M; Ossipov V; Ossipova S; Kapari L; Loponen J; Matsumura H; Kohno Y; Mikami C; Sakai Y; Izuta T; Pihlaja K J Chem Ecol; 2006 Jul; 32(7):1445-58. PubMed ID: 16718564 [TBL] [Abstract][Full Text] [Related]
30. Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO King J; Pregitzer K; Zak D; Sober J; Isebrands J; Dickson R; Hendrey G; Karnosky D Oecologia; 2001 Jul; 128(2):237-250. PubMed ID: 28547473 [TBL] [Abstract][Full Text] [Related]
31. Physiological responses of birch (Betula pendula) to ozone: a comparison between open-soil-grown trees exposed for six growing seasons and potted seedlings exposed for one season. Oksanen E Tree Physiol; 2003 Jun; 23(9):603-14. PubMed ID: 12750053 [TBL] [Abstract][Full Text] [Related]
32. Long-term exposure to elevated CO2 and O3 alters aspen foliar chemistry across developmental stages. Couture JJ; Holeski LM; Lindroth RL Plant Cell Environ; 2014 Mar; 37(3):758-65. PubMed ID: 24006844 [TBL] [Abstract][Full Text] [Related]
33. Mechanisms underlying the amelioration of O3-induced damage by elevated atmospheric concentrations of CO2. Cardoso-Vilhena J; Balaguer L; Eamus D; Ollerenshaw J; Barnes J J Exp Bot; 2004 Mar; 55(397):771-81. PubMed ID: 14966219 [TBL] [Abstract][Full Text] [Related]
34. Interactive effects of CO2 and O3 on a ponderosa pine plant/litter/soil mesocosm. Olszyk DM; Johnson MG; Phillips DL; Seidler RJ; Tingey DT; Watrud LS Environ Pollut; 2001; 115(3):447-62. PubMed ID: 11789925 [TBL] [Abstract][Full Text] [Related]
35. [Effects of elevated CO2 or/and O3 on growth and daily changes of photosynthesis in leaves of Pinus armandi]. Wang LL; He XY; Chen W Huan Jing Ke Xue; 2010 Jan; 31(1):36-40. PubMed ID: 20329513 [TBL] [Abstract][Full Text] [Related]
36. Atmospheric change alters foliar quality of host trees and performance of two outbreak insect species. Couture JJ; Meehan TD; Lindroth RL Oecologia; 2012 Mar; 168(3):863-76. PubMed ID: 21971584 [TBL] [Abstract][Full Text] [Related]
37. Host tree species mediate corticolous lichen responses to elevated CO Neufeld HS; Perkins FS Sci Total Environ; 2021 Apr; 764():142875. PubMed ID: 33757245 [TBL] [Abstract][Full Text] [Related]
38. Growth and crown architecture of two aspen genotypes exposed to interacting ozone and carbon dioxide. Dickson RE; Coleman MD; Pechter P; Karnosky D Environ Pollut; 2001; 115(3):319-34. PubMed ID: 11789916 [TBL] [Abstract][Full Text] [Related]
39. Exposure to moderate concentrations of tropospheric ozone impairs tree stomatal response to carbon dioxide. Onandia G; Olsson AK; Barth S; King JS; Uddling J Environ Pollut; 2011 Oct; 159(10):2350-4. PubMed ID: 21733606 [TBL] [Abstract][Full Text] [Related]
40. Gene expression responses of paper birch (Betula papyrifera) to elevated CO2 and O3 during leaf maturation and senescence. Kontunen-Soppela S; Parviainen J; Ruhanen H; Brosché M; Keinänen M; Thakur RC; Kolehmainen M; Kangasjärvi J; Oksanen E; Karnosky DF; Vapaavuori E Environ Pollut; 2010 Apr; 158(4):959-68. PubMed ID: 19889492 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]