BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 17450578)

  • 1. Biodegradable fibrous scaffolds composed of gelatin coated poly(epsilon-caprolactone) prepared by coaxial electrospinning.
    Zhao P; Jiang H; Pan H; Zhu K; Chen W
    J Biomed Mater Res A; 2007 Nov; 83(2):372-82. PubMed ID: 17450578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mild immobilization of diverse macromolecular bioactive agents onto multifunctional fibrous membranes prepared by coaxial electrospinning.
    Lu Y; Jiang H; Tu K; Wang L
    Acta Biomater; 2009 Jun; 5(5):1562-74. PubMed ID: 19251494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of zein-based nanofibrous scaffolds by an electrospinning method.
    Jiang H; Zhao P; Zhu K
    Macromol Biosci; 2007 Apr; 7(4):517-25. PubMed ID: 17429829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts.
    Zhang YZ; Venugopal J; Huang ZM; Lim CT; Ramakrishna S
    Biomacromolecules; 2005; 6(5):2583-9. PubMed ID: 16153095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility of Poly(epsilon-caprolactone) scaffold modified by chitosan--the fibroblasts proliferation in vitro.
    Mei N; Chen G; Zhou P; Chen X; Shao ZZ; Pan LF; Wu CG
    J Biomater Appl; 2005 Apr; 19(4):323-39. PubMed ID: 15788428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of cellular proliferation on dense and porous PCL scaffolds.
    Saşmazel HT; Gümüşderelioğlu M; Gürpinar A; Onur MA
    Biomed Mater Eng; 2008; 18(3):119-28. PubMed ID: 18725692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds.
    Jeong SI; Lee AY; Lee YM; Shin H
    J Biomater Sci Polym Ed; 2008; 19(3):339-57. PubMed ID: 18325235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and characterization of coaxially electrospun gelatin coated poly (3-hydroxybutyric acid) thin films as potential scaffolds for skin regeneration.
    Nagiah N; Madhavi L; Anitha R; Anandan C; Srinivasan NT; Sivagnanam UT
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4444-52. PubMed ID: 23910364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel fibrous scaffold composed of electrospun porous poly (epsilon-caprolactone) fibers for bone tissue engineering.
    Nguyen TH; Bao TQ; Park I; Lee BT
    J Biomater Appl; 2013 Nov; 28(4):514-28. PubMed ID: 23075833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibrous poly(chitosan-g-DL-lactic acid) scaffolds prepared via electro-wet-spinning.
    Wan Y; Cao X; Zhang S; Wang S; Wu Q
    Acta Biomater; 2008 Jul; 4(4):876-86. PubMed ID: 18356124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabricating microparticles/nanofibers composite and nanofiber scaffold with controllable pore size by rotating multichannel electrospinning.
    Huang YY; Wang DY; Chang LL; Yang YC
    J Biomater Sci Polym Ed; 2010; 21(11):1503-14. PubMed ID: 20534198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release.
    Zhang YZ; Wang X; Feng Y; Li J; Lim CT; Ramakrishna S
    Biomacromolecules; 2006 Apr; 7(4):1049-57. PubMed ID: 16602720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coating electrospun poly(epsilon-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering.
    Li X; Xie J; Yuan X; Xia Y
    Langmuir; 2008 Dec; 24(24):14145-50. PubMed ID: 19053657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility.
    Lee J; Tae G; Kim YH; Park IS; Kim SH; Kim SH
    Biomaterials; 2008 Apr; 29(12):1872-9. PubMed ID: 18234330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and characterization of dexamethasone-loaded poly (glycerol sebacate)-poly caprolactone/gelatin scaffold by coaxial electro spinning for soft tissue engineering.
    Nadim A; Khorasani SN; Kharaziha M; Davoodi SM
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():47-58. PubMed ID: 28576011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering.
    Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Ramakrishna S
    Biomaterials; 2008 Dec; 29(34):4532-9. PubMed ID: 18757094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro biocompatibility of electrospun poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber mats.
    Suwantong O; Waleetorncheepsawat S; Sanchavanakit N; Pavasant P; Cheepsunthorn P; Bunaprasert T; Supaphol P
    Int J Biol Macromol; 2007 Feb; 40(3):217-23. PubMed ID: 16949148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vascular tissue generation in response to signaling molecules integrated with a novel poly(epsilon-caprolactone)-fibrin hybrid scaffold.
    Pankajakshan D; Krishnan V K; Krishnan LK
    J Tissue Eng Regen Med; 2007; 1(5):389-97. PubMed ID: 18038433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly porous core-shell polymeric fiber network.
    Gulfam M; Lee JM; Kim JE; Lim DW; Lee EK; Chung BG
    Langmuir; 2011 Sep; 27(17):10993-9. PubMed ID: 21732692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.