These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 17450809)

  • 1. Influence of surface electrode on luminescent properties of nanocrystalline silicon electroluminescent device.
    Sato K; Hirakuri K
    J Nanosci Nanotechnol; 2007 Feb; 7(2):653-7. PubMed ID: 17450809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significant improvement of luminance and stability of a red electroluminescent device using nanocrystalline silicon.
    Sato K; Hirakuri K; Izumi T
    J Nanosci Nanotechnol; 2005 May; 5(5):738-41. PubMed ID: 16010931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of highly efficient full-color electroluminescent device composed of nanocrystalline silicon.
    Sato K; Hirakuri K; Iwase M; Izumi T
    J Nanosci Nanotechnol; 2005 Feb; 5(2):271-6. PubMed ID: 15853147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of oxidized layer on operating voltage and luminance of nanocrystalline silicon electroluminescent device.
    Sato K; Hirakuri K
    J Nanosci Nanotechnol; 2006 Jan; 6(1):200-4. PubMed ID: 16573096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of surface charge and electrode material on the size-dependent oxidation of surface-attached metal nanoparticles.
    Masitas RA; Khachian IV; Bill BL; Zamborini FP
    Langmuir; 2014 Nov; 30(43):13075-84. PubMed ID: 25260111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optoelectric biosensor using indium-tin-oxide electrodes.
    Choi CK; Kihm KD; English AE
    Opt Lett; 2007 Jun; 32(11):1405-7. PubMed ID: 17546136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of green electroluminescence from nanocrystalline silicon by wet and dry processes.
    Sato K; Hirakuri K
    J Nanosci Nanotechnol; 2006 Jan; 6(1):195-9. PubMed ID: 16573095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires.
    Gao J; Chen R; Li DH; Jiang L; Ye JC; Ma XC; Chen XD; Xiong QH; Sun HD; Wu T
    Nanotechnology; 2011 May; 22(19):195706. PubMed ID: 21430316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel ferroceneylazobenzene self-assembled monolayer on an ITO electrode: photochemical and electrochemical behaviors.
    Li C; Ren B; Zhang Y; Cheng Z; Liu X; Tong Z
    Langmuir; 2008 Nov; 24(22):12911-8. PubMed ID: 18928307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An endothelial cell compatible biosensor fabricated using optically thin indium tin oxide silicon nitride electrodes.
    Choi CK; English AE; Jun SI; Kihm KD; Rack PD
    Biosens Bioelectron; 2007 May; 22(11):2585-90. PubMed ID: 17113768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and electrical property of indium tin oxide nanofibers using electrospinning method.
    Lee YI; Lee KJ; Kim KD; Kim HT; Chang YW; Kang SC; Choa YH
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3910-3. PubMed ID: 18047086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical deposition of high density gold nanoparticles on indium/tin oxide electrode for fabrication of biosensors.
    Yu X; Wang L; Di J
    J Nanosci Nanotechnol; 2011 Dec; 11(12):11084-8. PubMed ID: 22409061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Molecule Electrochemistry on a Porous Silica-Coated Electrode.
    Lu J; Fan Y; Howard MD; Vaughan JC; Zhang B
    J Am Chem Soc; 2017 Mar; 139(8):2964-2971. PubMed ID: 28132499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K.
    Chiu SP; Chung HF; Lin YH; Kai JJ; Chen FR; Lin JJ
    Nanotechnology; 2009 Mar; 20(10):105203. PubMed ID: 19417513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinduced thermal copper reduction onto gold nanocrystals under potentiostatic control.
    Redmond PL; Walter EC; Brus LE
    J Phys Chem B; 2006 Dec; 110(50):25158-62. PubMed ID: 17165959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modification and characterization of indium-tin oxide for organic light-emitting devices.
    Zhong ZY; Jiang YD
    J Colloid Interface Sci; 2006 Oct; 302(2):613-9. PubMed ID: 16890950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of indium-tin oxide (ITO) glass with aziridine provides a surface of high amine density.
    Kim CO; Hong SY; Kim M; Park SM; Park JW
    J Colloid Interface Sci; 2004 Sep; 277(2):499-504. PubMed ID: 15341863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-induced temperature jump electrochemistry on gold nanoparticle-coated electrodes.
    Lowe LB; Brewer SH; Krämer S; Fuierer RR; Qian G; Agbasi-Porter CO; Moses S; Franzen S; Feldheim DL
    J Am Chem Soc; 2003 Nov; 125(47):14258-9. PubMed ID: 14624557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroluminescent devices based on amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures.
    Zhou J; Chen GR; Liu Y; Xu J; Wang T; Wan N; Ma ZY; Li W; Song C; Chen KJ
    Opt Express; 2009 Jan; 17(1):156-62. PubMed ID: 19129883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-temperature synthesis of indium tin oxide nanowires as the transparent electrodes for organic light emitting devices.
    Kee YY; Tan SS; Yong TK; Nee CH; Yap SS; Tou TY; Sáfrán G; Horváth ZE; Moscatello JP; Yap YK
    Nanotechnology; 2012 Jan; 23(2):025706. PubMed ID: 22166812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.