These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 17450830)

  • 1. Teleost fish scales: a unique biological model for the fabrication of materials for corneal stroma regeneration.
    Takagi Y; Ura K
    J Nanosci Nanotechnol; 2007 Mar; 7(3):757-62. PubMed ID: 17450830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orthogonal scaffold of magnetically aligned collagen lamellae for corneal stroma reconstruction.
    Torbet J; Malbouyres M; Builles N; Justin V; Roulet M; Damour O; Oldberg A; Ruggiero F; Hulmes DJ
    Biomaterials; 2007 Oct; 28(29):4268-76. PubMed ID: 17618680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoskeletal organization and collagen orientation in the fish scales.
    Zylberberg L; Bereiter-Hahn J; Sire JY
    Cell Tissue Res; 1988 Sep; 253(3):597-607. PubMed ID: 3052849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development, structure, and bioengineering of the human corneal stroma: A review of collagen-based implants.
    Tidu A; Schanne-Klein MC; Borderie VM
    Exp Eye Res; 2020 Nov; 200():108256. PubMed ID: 32971095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new three-dimensional model of the organization of proteoglycans and collagen fibrils in the human corneal stroma.
    Müller LJ; Pels E; Schurmans LR; Vrensen GF
    Exp Eye Res; 2004 Mar; 78(3):493-501. PubMed ID: 15106928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collagen fibril orientation in the human corneal stroma and its implication in keratoconus.
    Daxer A; Fratzl P
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):121-9. PubMed ID: 9008637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-laden and orthogonal-multilayer tissue-engineered corneal stroma induced by a mechanical collagen microenvironment and transplantation in a rabbit model.
    Cui Z; Zeng Q; Liu S; Zhang Y; Zhu D; Guo Y; Xie M; Mathew S; Cai D; Zhang J; Chen J
    Acta Biomater; 2018 Jul; 75():183-199. PubMed ID: 29883810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagen fibrils in the human corneal stroma: structure and aging.
    Daxer A; Misof K; Grabner B; Ettl A; Fratzl P
    Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):644-8. PubMed ID: 9501878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The arrangement of collagen fibrils in the iridescent cornea of the scorpion fish, Taurulus (Cottus) bubalis, and the transparency of vertebrate corneal stroma.
    Lythgoe JN
    J Physiol; 1976 Oct; 262(1):1-13. PubMed ID: 825638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of corneal stroma extracellular matrix assembly.
    Chen S; Mienaltowski MJ; Birk DE
    Exp Eye Res; 2015 Apr; 133():69-80. PubMed ID: 25819456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of the vertebrate corneal stroma.
    Koudouna E; Winkler M; Mikula E; Juhasz T; Brown DJ; Jester JV
    Prog Retin Eye Res; 2018 May; 64():65-76. PubMed ID: 29398348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen fibrils appear more closely packed in the prepupillary cornea: optical and biomechanical implications.
    Boote C; Dennis S; Newton RH; Puri H; Meek KM
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):2941-8. PubMed ID: 12824235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear-induced alignment of collagen fibrils using 3D cell printing for corneal stroma tissue engineering.
    Kim H; Jang J; Park J; Lee KP; Lee S; Lee DM; Kim KH; Kim HK; Cho DW
    Biofabrication; 2019 May; 11(3):035017. PubMed ID: 30995622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructure of the posterior corneal stroma.
    Schlötzer-Schrehardt U; Bachmann BO; Tourtas T; Torricelli AA; Singh A; González S; Mei H; Deng SX; Wilson SE; Kruse FE
    Ophthalmology; 2015 Apr; 122(4):693-9. PubMed ID: 25458195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of stromal collagen fibrils and proteoglycans in the developing zebrafish cornea.
    Akhtar S; Schonthaler HB; Bron AJ; Dahm R
    Acta Ophthalmol; 2008 Sep; 86(6):655-65. PubMed ID: 18221494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corneal small-angle light-scattering theory: wavy fibril models.
    Andreo RH; Farrell RA
    J Opt Soc Am; 1982 Nov; 72(11):1479-92. PubMed ID: 7143127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen type I and type V are present in the same fibril in the avian corneal stroma.
    Birk DE; Fitch JM; Babiarz JP; Linsenmayer TF
    J Cell Biol; 1988 Mar; 106(3):999-1008. PubMed ID: 3346334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Teleost fish scales amongst the toughest collagenous materials.
    Khayer Dastjerdi A; Barthelat F
    J Mech Behav Biomed Mater; 2015 Dec; 52():95-107. PubMed ID: 25457170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular compartments in matrix morphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts.
    Birk DE; Trelstad RL
    J Cell Biol; 1984 Dec; 99(6):2024-33. PubMed ID: 6542105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma.
    Meek KM; Boote C
    Prog Retin Eye Res; 2009 Sep; 28(5):369-92. PubMed ID: 19577657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.