These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17450850)

  • 1. Effects of carrier gas dynamics on single wall carbon nanotube chiral distributions during laser vaporization synthesis.
    Landi BJ; Raffaelle RP
    J Nanosci Nanotechnol; 2007 Mar; 7(3):883-90. PubMed ID: 17450850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ optical analysis of the gas phase during the formation of carbon nanotubes.
    Dorval N; Foutel-Richard A; Cau M; Loiseau A; Attal-Trétout B; Cochon JL; Pigache D; Bouchardy P; Krüger V; Geigle KP
    J Nanosci Nanotechnol; 2004 Apr; 4(4):450-62. PubMed ID: 15296236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials.
    Dillon AC; Yudasaka M; Dresselhaus MS
    J Nanosci Nanotechnol; 2004 Sep; 4(7):691-703. PubMed ID: 15570946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Raman spectra of carbon nanotubes produced in different inert atmosphere and their pressures].
    He YY; Zhang HY; Wu CY; Zhu YJ; Liang YB; Chen YM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Aug; 22(4):584-7. PubMed ID: 12938371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational fluid dynamics simulation of laser-ablated carbon plume propagation in varying background gases for single-walled nanotube synthesis.
    Greendyke RB; Swain J; Scott CD
    J Nanosci Nanotechnol; 2004 Apr; 4(4):441-9. PubMed ID: 15296235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of vaporization temperature on the diameter and chiral angle distributions of single-walled carbon nanotubes.
    Nikolaev P; Holmes W; Sosa E; Boul P; Arepalli S; Yowell L
    J Nanosci Nanotechnol; 2010 Jun; 10(6):3780-9. PubMed ID: 20355368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman spectroscopy characterization of single-wall carbon nanotube separation by their metallicity and diameter.
    Brar VW; Samsonidze GG; Santos AP; Chou SG; Chattopadhyay D; Kim SN; Papadimitrakopoulos F; Zheng M; Jagota A; Onoa GB; Swan AK; Unlü MS; Goldberg BB; Dresselhaus G; Dresselhaus MS
    J Nanosci Nanotechnol; 2005 Feb; 5(2):209-28. PubMed ID: 15853139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A parametric study of single-wall carbon nanotube growth by laser ablation.
    Arepalli S; Holmes WA; Nikolaev P; Hadjiev VG; Scott CD
    J Nanosci Nanotechnol; 2004 Sep; 4(7):762-73. PubMed ID: 15570958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arc process parameters for single-walled carbon nanotube growth and production: experiments and modeling.
    Farhat S; Hinkov I; Scott CD
    J Nanosci Nanotechnol; 2004 Apr; 4(4):377-89. PubMed ID: 15296227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman-active modes of single-walled carbon nanotubes derived from the gas-phase decomposition of CO (HiPco process).
    Chen G; Sumanasekera GU; Pradhan BK; Gupta R; Eklund PC; Bronikowski MJ; Smalley RE
    J Nanosci Nanotechnol; 2002 Dec; 2(6):621-6. PubMed ID: 12908425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decomposition of carbon-containing compounds on solid catalysts for single-walled nanotube production.
    Resasco DE; Herrera JE; Balzano L
    J Nanosci Nanotechnol; 2004 Apr; 4(4):398-407. PubMed ID: 15296229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects.
    Fantini C; Jorio A; Souza M; Strano MS; Dresselhaus MS; Pimenta MA
    Phys Rev Lett; 2004 Oct; 93(14):147406. PubMed ID: 15524844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective diameter control of single-walled carbon nanotubes in the gas-phase synthesis.
    Saito T; Ohshima S; Okazaki T; Ohmori S; Yumura M; Iijima S
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6153-7. PubMed ID: 19198357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-handed helical wrapping of single-walled carbon nanotubes by chiral, ionic, semiconducting polymers.
    Deria P; Von Bargen CD; Olivier JH; Kumbhar AS; Saven JG; Therien MJ
    J Am Chem Soc; 2013 Oct; 135(43):16220-34. PubMed ID: 24070370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysing one isolated single walled carbon nanotube in the near-field domain with selective nanovolume Raman spectroscopy.
    Atalay H; Lefrant S
    J Nanosci Nanotechnol; 2004 Sep; 4(7):749-61. PubMed ID: 15570957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-walled carbon nanotube diameter.
    Jost O; Gorbunov A; Liu X; Pompe W; Fink J
    J Nanosci Nanotechnol; 2004 Apr; 4(4):433-40. PubMed ID: 15296234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of gas adsorption on optical transition energies of single-walled carbon nanotubes.
    Chiashi S; Watanabe S; Hanashima T; Homma Y
    Nano Lett; 2008 Oct; 8(10):3097-101. PubMed ID: 18759486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical vapor deposition synthesis of near-zigzag single-walled carbon nanotubes with stable tube-catalyst interface.
    Zhao Q; Xu Z; Hu Y; Ding F; Zhang J
    Sci Adv; 2016 May; 2(5):e1501729. PubMed ID: 27386532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic-type- and diameter-dependent reduction of single-walled carbon nanotubes induced by adsorption of electron-donor molecules.
    Zhou J; Maeda Y; Lu J; Tashiro A; Hasegawa T; Luo G; Wang L; Lai L; Akasaka T; Nagase S; Gao Z; Qin R; Mei WN; Li G; Yu D
    Small; 2009 Feb; 5(2):244-55. PubMed ID: 19058283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.