These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 17450851)

  • 1. Carbon nanotubes grown on stainless steel to form plate and probe electrodes for chemical/biological sensing.
    Yun Y; Gollapudi R; Shanov V; Schulz MJ; Dong Z; Jazieh A; Heineman WR; Halsall HB; Wong DK; Bange A; Tu Y; Subramaniam S
    J Nanosci Nanotechnol; 2007 Mar; 7(3):891-7. PubMed ID: 17450851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultralong aligned multi-walled carbon nanotube for electrochemical sensing.
    Punbusayakul N; Ci L; Talapatra S; Surareungchai W; Ajayan PM
    J Nanosci Nanotechnol; 2008 Apr; 8(4):2085-90. PubMed ID: 18572618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G
    ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the Properties of Vertical Carbon Nanotube Films Grown on Stainless Steel Bipolar Plates.
    Lu C; Shi F; Jin J; Peng X
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30889839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes.
    Zhu L; Zhai J; Yang R; Tian C; Guo L
    Biosens Bioelectron; 2007 May; 22(11):2768-73. PubMed ID: 17267199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor.
    Zhu Z; Song W; Burugapalli K; Moussy F; Li YL; Zhong XH
    Nanotechnology; 2010 Apr; 21(16):165501. PubMed ID: 20348597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube-based electrochemical biosensing platforms: fundamentals, applications, and future possibilities.
    Luong JH; Male KB; Hrapovic S
    Recent Pat Biotechnol; 2007; 1(2):181-91. PubMed ID: 19075840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum.
    Fei S; Chen J; Yao S; Deng G; He D; Kuang Y
    Anal Biochem; 2005 Apr; 339(1):29-35. PubMed ID: 15766706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Ni Deposition on the Electrochemical Properties of CNT/Ni Electrode and Its Application for Glucose Sensing.
    Zhu Z; Chen C; Zhu X; Xie R; Flewitt AJ; Milne WI
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3196-9. PubMed ID: 26353562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosensors based on carbon nanotubes.
    Balasubramanian K; Burghard M
    Anal Bioanal Chem; 2006 Jun; 385(3):452-68. PubMed ID: 16568294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of carbon nanotubes with redox hydrogel: improvement of amperometric sensing sensitivity for redox enzymes.
    Cui HF; Ye JS; Zhang WD; Sheu FS
    Biosens Bioelectron; 2009 Feb; 24(6):1723-9. PubMed ID: 18951014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A carbon nanotube needle biosensor.
    Yun Y; Bange A; Shanov VN; Heineman WR; Halsall HB; Dong Z; Jazieh A; Tu Y; Wong D; Pixley S; Behbehani M; Schulz MJ
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2293-300. PubMed ID: 17663243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electropolymerized molecular imprinting on gold nanoparticle-carbon nanotube modified electrode for electrochemical detection of triazophos.
    Li H; Xie C; Li S; Xu K
    Colloids Surf B Biointerfaces; 2012 Jan; 89():175-81. PubMed ID: 21955508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotubes based methanol sensor for fuel cells application.
    Kim DW; Lee JS; Lee GS; Overzet L; Kozlov M; Aliev AE; Park YW; Yang DJ
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3608-13. PubMed ID: 17252821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defect Sites Modulate Fouling Resistance on Carbon-Nanotube Fiber Electrodes.
    Weese ME; Krevh RA; Li Y; Alvarez NT; Ross AE
    ACS Sens; 2019 Apr; 4(4):1001-1007. PubMed ID: 30920207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric field-assisted deposition of nanowires on carbon nanotubes for nanoelectronics and sensor applications.
    Sivakumar K; Panchapakesan B
    J Nanosci Nanotechnol; 2005 Feb; 5(2):313-8. PubMed ID: 15853154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotube fiber microelectrodes: design, characterization, and optimization.
    Viry L; Derré A; Garrigue P; Sojic N; Poulin P; Kuhn A
    J Nanosci Nanotechnol; 2007 Oct; 7(10):3373-7. PubMed ID: 18330143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical oxidation of catecholamines and catechols at carbon nanotube electrodes.
    Maldonado S; Morin S; Stevenson KJ
    Analyst; 2006 Feb; 131(2):262-7. PubMed ID: 16440092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of functionalized multiwalled carbon nanotubes for use in an enzymatic sensor.
    Guadarrama-Fernández L; Chanona-Pérez J; Manzo-Robledo A; Calderón-Domínguez G; Martínez-Rivas A; Ortiz-López J; Vargas-García JR
    Microsc Microanal; 2014 Oct; 20(5):1479-85. PubMed ID: 25156941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns.
    Yang J; Cheng S; Sun Y; Li C
    Biotechnol Lett; 2017 Oct; 39(10):1515-1520. PubMed ID: 28664313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.