These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 17450920)
1. Investigation of the influence of thermostat configurations on the mechanical properties of carbon nanotubes in molecular dynamics simulations. Heo S; Sinnott SB J Nanosci Nanotechnol; 2007; 7(4-5):1518-24. PubMed ID: 17450920 [TBL] [Abstract][Full Text] [Related]
2. Effect of filling on the compressibility of carbon nanotubes: predictions from molecular dynamics simulations. Trotter H; Phillips R; Ni B; Hu Y; Sinnott SB; Mikulski PT; Harrison JA J Nanosci Nanotechnol; 2005 Apr; 5(4):536-41. PubMed ID: 16004116 [TBL] [Abstract][Full Text] [Related]
3. Buckling of carbon nanotubes at high temperatures. Zhang YY; Wang CM; Tan VB Nanotechnology; 2009 May; 20(21):215702. PubMed ID: 19423941 [TBL] [Abstract][Full Text] [Related]
4. Implementations of Nosé-Hoover and Nosé-Poincaré thermostats in mesoscopic dynamic simulations with the united-residue model of a polypeptide chain. Kleinerman DS; Czaplewski C; Liwo A; Scheraga HA J Chem Phys; 2008 Jun; 128(24):245103. PubMed ID: 18601387 [TBL] [Abstract][Full Text] [Related]
5. Effects of Molecular Dynamics Thermostats on Descriptions of Chemical Nonequilibrium. Page AJ; Isomoto T; Knaup JM; Irle S; Morokuma K J Chem Theory Comput; 2012 Nov; 8(11):4019-28. PubMed ID: 26605569 [TBL] [Abstract][Full Text] [Related]
6. Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics. Yong X; Zhang LT J Chem Phys; 2013 Feb; 138(8):084503. PubMed ID: 23464156 [TBL] [Abstract][Full Text] [Related]
7. Water flow in carbon nanotubes: The effect of tube flexibility and thermostat. Sam A; Kannam SK; Hartkamp R; Sathian SP J Chem Phys; 2017 Jun; 146(23):234701. PubMed ID: 28641430 [TBL] [Abstract][Full Text] [Related]
8. Effects of Temperature Control Algorithms on Transport Properties and Kinetics in Molecular Dynamics Simulations. Basconi JE; Shirts MR J Chem Theory Comput; 2013 Jul; 9(7):2887-99. PubMed ID: 26583973 [TBL] [Abstract][Full Text] [Related]
9. Consideration of critical axial properties of pristine and defected carbon nanotubes under compression. Ranjbartoreh AR; Su D; Wang G J Nanosci Nanotechnol; 2012 Jun; 12(6):5025-9. PubMed ID: 22905571 [TBL] [Abstract][Full Text] [Related]
10. Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids. Li Z; Xiong S; Sievers C; Hu Y; Fan Z; Wei N; Bao H; Chen S; Donadio D; Ala-Nissila T J Chem Phys; 2019 Dec; 151(23):234105. PubMed ID: 31864248 [TBL] [Abstract][Full Text] [Related]
11. Simulations of proteins with inhomogeneous degrees of freedom: The effect of thermostats. Mor A; Ziv G; Levy Y J Comput Chem; 2008 Sep; 29(12):1992-8. PubMed ID: 18366022 [TBL] [Abstract][Full Text] [Related]
12. Galilean-invariant Nosé-Hoover-type thermostats. Pieprzyk S; Heyes DM; Maćkowiak S; Brańka AC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033312. PubMed ID: 25871251 [TBL] [Abstract][Full Text] [Related]
13. A method to evaluate the tensile strength and stress-strain relationship of carbon nanofibers, carbon nanotubes, and C-chains. Márquez-Lucero A; Gomez JA; Caudillo R; Miki-Yoshida M; José-Yacaman M Small; 2005 Jun; 1(6):640-4. PubMed ID: 17193500 [TBL] [Abstract][Full Text] [Related]
14. Further cautionary tales on thermostatting in molecular dynamics: Energy equipartitioning and non-equilibrium processes in gas-phase simulations. Halonen R; Neefjes I; Reischl B J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184012 [TBL] [Abstract][Full Text] [Related]
16. Influence of thermostats and carrier gas on simulations of nucleation. Wedekind J; Reguera D; Strey R J Chem Phys; 2007 Aug; 127(6):064501. PubMed ID: 17705606 [TBL] [Abstract][Full Text] [Related]
17. Efficient stochastic thermostatting of path integral molecular dynamics. Ceriotti M; Parrinello M; Markland TE; Manolopoulos DE J Chem Phys; 2010 Sep; 133(12):124104. PubMed ID: 20886921 [TBL] [Abstract][Full Text] [Related]
18. Fast-forward Langevin dynamics with momentum flips. Hijazi M; Wilkins DM; Ceriotti M J Chem Phys; 2018 May; 148(18):184109. PubMed ID: 29764135 [TBL] [Abstract][Full Text] [Related]
19. A unified thermostat scheme for efficient configurational sampling for classical/quantum canonical ensembles via molecular dynamics. Zhang Z; Liu X; Chen Z; Zheng H; Yan K; Liu J J Chem Phys; 2017 Jul; 147(3):034109. PubMed ID: 28734283 [TBL] [Abstract][Full Text] [Related]
20. Proper Thermal Equilibration of Simulations with Drude Polarizable Models: Temperature-Grouped Dual-Nosé-Hoover Thermostat. Son CY; McDaniel JG; Cui Q; Yethiraj A J Phys Chem Lett; 2019 Dec; 10(23):7523-7530. PubMed ID: 31722528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]