These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 17450943)
1. Vertically aligned carbon nanotubes as cytocompatible material for enhanced adhesion and proliferation of osteoblast-like cells. Giannona S; Firkowska I; Rojas-Chapana J; Giersig M J Nanosci Nanotechnol; 2007; 7(4-5):1679-83. PubMed ID: 17450943 [TBL] [Abstract][Full Text] [Related]
2. Mechanoresponses of human primary osteoblasts grown on carbon nanotubes. Kroustalli A; Kotsikoris V; Karamitri A; Topouzis S; Deligianni D J Biomed Mater Res A; 2015 Mar; 103(3):1038-44. PubMed ID: 24910375 [TBL] [Abstract][Full Text] [Related]
3. Adhesion of human osteoblast-like cells (Saos-2) to carbon nanotube sheets. Akasaka T; Yokoyama A; Matsuoka M; Hashimoto T; Abe S; Uo M; Watari F Biomed Mater Eng; 2009; 19(2-3):147-53. PubMed ID: 19581708 [TBL] [Abstract][Full Text] [Related]
4. An evaluation of chondrocyte morphology and gene expression on superhydrophilic vertically-aligned multi-walled carbon nanotube films. Antonioli E; Lobo AO; Ferretti M; Cohen M; Marciano FR; Corat EJ; Trava-Airoldi VJ Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):641-7. PubMed ID: 25427468 [TBL] [Abstract][Full Text] [Related]
6. Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. Puckett S; Pareta R; Webster TJ Int J Nanomedicine; 2008; 3(2):229-41. PubMed ID: 18686782 [TBL] [Abstract][Full Text] [Related]
7. Continuous high-yield production of vertically aligned carbon nanotubes on 2D and 3D substrates. Guzmán de Villoria R; Hart AJ; Wardle BL ACS Nano; 2011 Jun; 5(6):4850-7. PubMed ID: 21591620 [TBL] [Abstract][Full Text] [Related]
8. Fast preparation of hydroxyapatite/superhydrophilic vertically aligned multiwalled carbon nanotube composites for bioactive application. Lobo AO; Corat MA; Ramos SC; Matsushima JT; Granato AE; Pacheco-Soares C; Corat EJ Langmuir; 2010 Dec; 26(23):18308-14. PubMed ID: 20961085 [TBL] [Abstract][Full Text] [Related]
9. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. Silva E; Vasconcellos LMR; Rodrigues BVM; Dos Santos DM; Campana-Filho SP; Marciano FR; Webster TJ; Lobo AO Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():31-39. PubMed ID: 28183613 [TBL] [Abstract][Full Text] [Related]
10. Performance assessments of vertically aligned carbon nanotubes multi-electrode arrays using Cath.a-differentiated (CAD) cells. Jeong du W; Jung J; Kim GH; Yang CS; Kim JJ; Jung SD; Lee JO Nanotechnology; 2015 Aug; 26(33):335701. PubMed ID: 26222018 [TBL] [Abstract][Full Text] [Related]
11. Maturation of osteoblast-like SaoS2 induced by carbon nanotubes. Li X; Gao H; Uo M; Sato Y; Akasaka T; Abe S; Feng Q; Cui F; Watari F Biomed Mater; 2009 Feb; 4(1):015005. PubMed ID: 18981539 [TBL] [Abstract][Full Text] [Related]
12. Monolayer formation of human osteoblastic cells on vertically aligned multiwalled carbon nanotube scaffolds. Lobo AO; Antunes EF; Palma MB; Pacheco-Soares C; Trava-Airoldi VJ; Corat EJ Cell Biol Int; 2010 Mar; 34(4):393-8. PubMed ID: 19947917 [TBL] [Abstract][Full Text] [Related]
13. Bone cell proliferation on carbon nanotubes. Zanello LP; Zhao B; Hu H; Haddon RC Nano Lett; 2006 Mar; 6(3):562-7. PubMed ID: 16522063 [TBL] [Abstract][Full Text] [Related]
14. Using single-walled carbon nanotubes nonwoven films as scaffolds to enhance long-term cell proliferation in vitro. Meng J; Song L; Meng J; Kong H; Zhu G; Wang C; Xu L; Xie S; Xu H J Biomed Mater Res A; 2006 Nov; 79(2):298-306. PubMed ID: 16817220 [TBL] [Abstract][Full Text] [Related]
15. Vertically Aligned Carbon Nanotubes as a Unique Material for Biomedical Applications. Kohls A; Maurer Ditty M; Dehghandehnavi F; Zheng SY ACS Appl Mater Interfaces; 2022 Feb; 14(5):6287-6306. PubMed ID: 35090107 [TBL] [Abstract][Full Text] [Related]
16. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. Oh S; Daraio C; Chen LH; Pisanic TR; Fiñones RR; Jin S J Biomed Mater Res A; 2006 Jul; 78(1):97-103. PubMed ID: 16602089 [TBL] [Abstract][Full Text] [Related]
17. Poly(vinyl alcohol)/halloysite nanotubes bionanocomposite films: Properties and in vitro osteoblasts and fibroblasts response. Zhou WY; Guo B; Liu M; Liao R; Rabie AB; Jia D J Biomed Mater Res A; 2010 Jun; 93(4):1574-87. PubMed ID: 20014291 [TBL] [Abstract][Full Text] [Related]
18. [Research and development of biomedical application of carbon nanotubes and related composites]. Guo X; Xu H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr; 23(2):438-41. PubMed ID: 16706384 [TBL] [Abstract][Full Text] [Related]
19. Novel poly(L-lactide) PLLA/SWNTs nanocomposites for biomedical applications: material characterization and biocompatibility evaluation. Armentano I; Marinucci L; Dottori M; Balloni S; Fortunati E; Pennacchi M; Becchetti E; Locci P; Kenny JM J Biomater Sci Polym Ed; 2011; 22(4-6):541-56. PubMed ID: 20566045 [TBL] [Abstract][Full Text] [Related]
20. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide). Wan Y; Wang Y; Liu Z; Qu X; Han B; Bei J; Wang S Biomaterials; 2005 Jul; 26(21):4453-9. PubMed ID: 15701374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]