BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 17451225)

  • 1. A novel logic-based approach for quantitative toxicology prediction.
    Amini A; Muggleton SH; Lodhi H; Sternberg MJ
    J Chem Inf Model; 2007; 47(3):998-1006. PubMed ID: 17451225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming.
    Amini A; Shrimpton PJ; Muggleton SH; Sternberg MJ
    Proteins; 2007 Dec; 69(4):823-31. PubMed ID: 17910057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds.
    Cannon EO; Amini A; Bender A; Sternberg MJ; Muggleton SH; Glen RC; Mitchell JB
    J Comput Aided Mol Des; 2007 May; 21(5):269-80. PubMed ID: 17387437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of rodent carcinogenicity bioassays from molecular structure using inductive logic programming.
    King RD; Srinivasan A
    Environ Health Perspect; 1996 Oct; 104 Suppl 5(Suppl 5):1031-40. PubMed ID: 8933051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaffold hopping in drug discovery using inductive logic programming.
    Tsunoyama K; Amini A; Sternberg MJ; Muggleton SH
    J Chem Inf Model; 2008 May; 48(5):949-57. PubMed ID: 18457387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-activity relationships derived by machine learning: the use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming.
    King RD; Muggleton SH; Srinivasan A; Sternberg MJ
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):438-42. PubMed ID: 8552655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovering rules for protein-ligand specificity using support vector inductive logic programming.
    Kelley LA; Shrimpton PJ; Muggleton SH; Sternberg MJ
    Protein Eng Des Sel; 2009 Sep; 22(9):561-7. PubMed ID: 19574295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-class Mode of Action Classification of Toxic Compounds Using Logic Based Kernel Methods.
    Lodhi H; Muggleton S; Sternberg MJ
    Mol Inform; 2010 Sep; 29(8-9):655-64. PubMed ID: 27463459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated identification of protein-ligand interaction features using Inductive Logic Programming: a hexose binding case study.
    A Santos JC; Nassif H; Page D; Muggleton SH; E Sternberg MJ
    BMC Bioinformatics; 2012 Jul; 13():162. PubMed ID: 22783946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New approach to pharmacophore mapping and QSAR analysis using inductive logic programming. Application to thermolysin inhibitors and glycogen phosphorylase B inhibitors.
    Marchand-Geneste N; Watson KA; Alsberg BK; King RD
    J Med Chem; 2002 Jan; 45(2):399-409. PubMed ID: 11784144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Representation of molecular structure using quantum topology with inductive logic programming in structure-activity relationships.
    Buttingsrud B; Ryeng E; King RD; Alsberg BK
    J Comput Aided Mol Des; 2006 Jun; 20(6):361-73. PubMed ID: 17054018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug design by machine learning: the use of inductive logic programming to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase.
    King RD; Muggleton S; Lewis RA; Sternberg MJ
    Proc Natl Acad Sci U S A; 1992 Dec; 89(23):11322-6. PubMed ID: 1454814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The discovery of indicator variables for QSAR using inductive logic programming.
    King RD; Srinivasan A
    J Comput Aided Mol Des; 1997 Nov; 11(6):571-80. PubMed ID: 9491349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovering H-bonding rules in crystals with inductive logic programming.
    Ando HY; Dehaspe L; Luyten W; Van Craenenbroeck E; Vandecasteele H; Van Meervelt L
    Mol Pharm; 2006; 3(6):665-74. PubMed ID: 17140254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative structure-activity relationships by neural networks and inductive logic programming. II. The inhibition of dihydrofolate reductase by triazines.
    Hirst JD; King RD; Sternberg MJ
    J Comput Aided Mol Des; 1994 Aug; 8(4):421-32. PubMed ID: 7815093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative structure-activity relationships by neural networks and inductive logic programming. I. The inhibition of dihydrofolate reductase by pyrimidines.
    Hirst JD; King RD; Sternberg MJ
    J Comput Aided Mol Des; 1994 Aug; 8(4):405-20. PubMed ID: 7815092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating protein three-dimensional fold signatures using inductive logic programming.
    Turcotte M; Muggleton SH; Sternberg MJ
    Comput Chem; 2001 Dec; 26(1):57-64. PubMed ID: 11765853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Critical Review of Inductive Logic Programming Techniques for Explainable AI.
    Zhang Z; Yilmaz L; Liu B
    IEEE Trans Neural Netw Learn Syst; 2023 Apr; PP():. PubMed ID: 37018093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal abstraction and inductive logic programming for arrhythmia recognition from electrocardiograms.
    Carrault G; Cordier MO; Quiniou R; Wang F
    Artif Intell Med; 2003 Jul; 28(3):231-63. PubMed ID: 12927335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico quantitative structure toxicity relationship of chemical compounds: some case studies.
    Deeb O; Goodarzi M
    Curr Drug Saf; 2012 Sep; 7(4):289-97. PubMed ID: 23062241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.