These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. Jahn A; Vreeland WN; Gaitan M; Locascio LE J Am Chem Soc; 2004 Mar; 126(9):2674-5. PubMed ID: 14995164 [TBL] [Abstract][Full Text] [Related]
5. Determination of size distribution and encapsulation efficiency of liposome-encapsulated hemoglobin blood substitutes using asymmetric flow field-flow fractionation coupled with multi-angle static light scattering. Arifin DR; Palmer AF Biotechnol Prog; 2003; 19(6):1798-811. PubMed ID: 14656159 [TBL] [Abstract][Full Text] [Related]
6. Using bioinspired thermally triggered liposomes for high-efficiency mixing and reagent delivery in microfluidic devices. Vreeland WN; Locascio LE Anal Chem; 2003 Dec; 75(24):6906-11. PubMed ID: 14670052 [TBL] [Abstract][Full Text] [Related]
7. Freezing continuous-flow self-assembly in a microfluidic device: toward imaging of liposome formation. Jahn A; Lucas F; Wepf RA; Dittrich PS Langmuir; 2013 Feb; 29(5):1717-23. PubMed ID: 23289615 [TBL] [Abstract][Full Text] [Related]
8. Accurate optical analysis of single-molecule entrapment in nanoscale vesicles. Reiner JE; Jahn A; Stavis SM; Culbertson MJ; Vreeland WN; Burden DL; Geist J; Gaitan M Anal Chem; 2010 Jan; 82(1):180-8. PubMed ID: 19950933 [TBL] [Abstract][Full Text] [Related]
9. Influence of micro-mixing on the size of liposomes self-assembled from miscible liquid phases. Phapal SM; Sunthar P Chem Phys Lipids; 2013; 172-173():20-30. PubMed ID: 23669147 [TBL] [Abstract][Full Text] [Related]
10. Controlled self-assembly of monodisperse niosomes by microfluidic hydrodynamic focusing. Lo CT; Jahn A; Locascio LE; Vreeland WN Langmuir; 2010 Jun; 26(11):8559-66. PubMed ID: 20146467 [TBL] [Abstract][Full Text] [Related]
11. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Zhigaltsev IV; Belliveau N; Hafez I; Leung AK; Huft J; Hansen C; Cullis PR Langmuir; 2012 Feb; 28(7):3633-40. PubMed ID: 22268499 [TBL] [Abstract][Full Text] [Related]
12. Structure of small actin-containing liposomes probed by atomic force microscopy: effect of actin concentration & liposome size. Li S; Palmer AF Langmuir; 2004 Sep; 20(19):7917-25. PubMed ID: 15350053 [TBL] [Abstract][Full Text] [Related]
13. Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay. Pamme N; Koyama R; Manz A Lab Chip; 2003 Aug; 3(3):187-92. PubMed ID: 15100772 [TBL] [Abstract][Full Text] [Related]
15. Liposome formation from bile salt-lipid micelles in the digestion and drug delivery model FaSSIF(mod) estimated by combined time-resolved neutron and dynamic light scattering. Nawroth T; Buch P; Buch K; Langguth P; Schweins R Mol Pharm; 2011 Dec; 8(6):2162-72. PubMed ID: 21988605 [TBL] [Abstract][Full Text] [Related]
16. Liposome fractionation and size analysis by asymmetrical flow field-flow fractionation/multi-angle light scattering: influence of ionic strength and osmotic pressure of the carrier liquid. Hupfeld S; Moen HH; Ausbacher D; Haas H; Brandl M Chem Phys Lipids; 2010 Feb; 163(2):141-7. PubMed ID: 19900428 [TBL] [Abstract][Full Text] [Related]
18. A facile microfluidic method for production of liposomes. Pradhan P; Guan J; Lu D; Wang PG; Lee LJ; Lee RJ Anticancer Res; 2008; 28(2A):943-7. PubMed ID: 18507040 [TBL] [Abstract][Full Text] [Related]
19. The influence of size, lipid composition and bilayer fluidity of cationic liposomes on the transfection efficiency of nanolipoplexes. Ramezani M; Khoshhamdam M; Dehshahri A; Malaekeh-Nikouei B Colloids Surf B Biointerfaces; 2009 Aug; 72(1):1-5. PubMed ID: 19395245 [TBL] [Abstract][Full Text] [Related]