BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17451276)

  • 1. Direct observation of nanomechanical properties of chromatin in living cells.
    de Vries AH; Krenn BE; van Driel R; Subramaniam V; Kanger JS
    Nano Lett; 2007 May; 7(5):1424-7. PubMed ID: 17451276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular manipulation of chromatin using magnetic nanoparticles.
    Kanger JS; Subramaniam V; van Driel R
    Chromosome Res; 2008; 16(3):511-22. PubMed ID: 18461487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Chromatin Structure with Magnetic Tweezers.
    Kaczmarczyk A; Brouwer TB; Pham C; Dekker NH; van Noort J
    Methods Mol Biol; 2018; 1814():297-323. PubMed ID: 29956240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of cell Young's modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion.
    Kamgoué A; Ohayon J; Tracqui P
    J Biomech Eng; 2007 Aug; 129(4):523-30. PubMed ID: 17655473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of viscoelastic properties of the cellular cytoplasm using optically trapped Brownian probes.
    Vaippully R; Ramanujan V; Bajpai S; Roy B
    J Phys Condens Matter; 2020 May; 32(23):235101. PubMed ID: 32059195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local viscoelasticity of living cells measured by rotational magnetic spectroscopy.
    Berret JF
    Nat Commun; 2016 Jan; 7():10134. PubMed ID: 26729062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers.
    Bausch AR; Möller W; Sackmann E
    Biophys J; 1999 Jan; 76(1 Pt 1):573-9. PubMed ID: 9876170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro magnetic tweezers for nanomanipulation inside live cells.
    de Vries AH; Krenn BE; van Driel R; Kanger JS
    Biophys J; 2005 Mar; 88(3):2137-44. PubMed ID: 15556976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High frequency characteristics of elasticity of skeletal muscle fibres kept in relaxed and rigor state.
    De Winkel ME; Blangé T; Treijtel BW
    J Muscle Res Cell Motil; 1994 Apr; 15(2):130-44. PubMed ID: 8051287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between bond strength and nanomechanical properties of adhesive interface.
    Freitas PH; Giannini M; França R; Correr AB; Correr-Sobrinho L; Consani S
    Clin Oral Investig; 2017 May; 21(4):1055-1062. PubMed ID: 27221518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechano-acoustic determination of Young's modulus of articular cartilage.
    Saarakkala S; Korhonen RK; Laasanen MS; Töyräs J; Rieppo J; Jurvelin JS
    Biorheology; 2004; 41(3-4):167-79. PubMed ID: 15299250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct measurement of local chromatin fluidity using optical trap modulation force spectroscopy.
    Roopa T; Shivashankar GV
    Biophys J; 2006 Dec; 91(12):4632-7. PubMed ID: 17012315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Fluctuations and Coalescence of Nucleolar Droplets in the Human Cell Nucleus.
    Caragine CM; Haley SC; Zidovska A
    Phys Rev Lett; 2018 Oct; 121(14):148101. PubMed ID: 30339413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling DNA Organization with Single-Molecule Force Spectroscopy Using Magnetic Tweezers.
    Brouwer TB; Kaczmarczyk A; Pham C; van Noort J
    Methods Mol Biol; 2018; 1837():317-349. PubMed ID: 30109618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy.
    Guhados G; Wan W; Hutter JL
    Langmuir; 2005 Jul; 21(14):6642-6. PubMed ID: 15982078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments.
    Lin J; Valentine MT
    Rev Sci Instrum; 2012 May; 83(5):053905. PubMed ID: 22667631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standardized Nanomechanical Atomic Force Microscopy Procedure (SNAP) for Measuring Soft and Biological Samples.
    Schillers H; Rianna C; Schäpe J; Luque T; Doschke H; Wälte M; Uriarte JJ; Campillo N; Michanetzis GPA; Bobrowska J; Dumitru A; Herruzo ET; Bovio S; Parot P; Galluzzi M; Podestà A; Puricelli L; Scheuring S; Missirlis Y; Garcia R; Odorico M; Teulon JM; Lafont F; Lekka M; Rico F; Rigato A; Pellequer JL; Oberleithner H; Navajas D; Radmacher M
    Sci Rep; 2017 Jul; 7(1):5117. PubMed ID: 28698636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomechanics of Fluorescent DNA Dyes on DNA Investigated by Magnetic Tweezers.
    Wang Y; Sischka A; Walhorn V; Tönsing K; Anselmetti D
    Biophys J; 2016 Oct; 111(8):1604-1611. PubMed ID: 27760348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying Force and Viscoelasticity Inside Living Cells Using an Active-Passive Calibrated Optical Trap.
    Ritter CM; Mas J; Oddershede L; Berg-Sørensen K
    Methods Mol Biol; 2017; 1486():513-536. PubMed ID: 27844442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the micro-rheological properties of aerosol particles using optical tweezers.
    Power RM; Reid JP
    Rep Prog Phys; 2014 Jul; 77(7):074601. PubMed ID: 24994710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.