These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17451428)

  • 1. Peroxin Pex21p interacts with the C-terminal noncatalytic domain of yeast seryl-tRNA synthetase and forms a specific ternary complex with tRNA(Ser).
    Godinic V; Mocibob M; Rocak S; Ibba M; Weygand-Durasevic I
    FEBS J; 2007 Jun; 274(11):2788-99. PubMed ID: 17451428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying Pex21p as a protein that specifically interacts with yeast seryl-tRNA synthetase.
    Rocak S; Landeka I; Weygand-Durasevic I
    FEMS Microbiol Lett; 2002 Aug; 214(1):101-6. PubMed ID: 12204379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The proximal region of a noncatalytic eukaryotic seryl-tRNA synthetase extension is required for protein stability in vitro and in vivo.
    Mocibob M; Weygand-Durasevic I
    Arch Biochem Biophys; 2008 Feb; 470(2):129-38. PubMed ID: 18067851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superposition of a tRNASer acceptor stem microhelix into the seryl-tRNA synthetase complex.
    Förster C; Brauer AB; Fürste JP; Betzel Ch; Weber M; Cordes F; Erdmann VA
    Biochem Biophys Res Commun; 2007 Oct; 362(2):415-8. PubMed ID: 17719008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maize seryl-tRNA synthetase: specificity of substrate recognition by the organellar enzyme.
    Rokov-Plavec J; Lesjak S; Landeka I; Mijakovic I; Weygand-Durasevic I
    Arch Biochem Biophys; 2002 Jan; 397(1):40-50. PubMed ID: 11747308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular determinants of the yeast Arc1p-aminoacyl-tRNA synthetase complex assembly.
    Karanasios E; Simader H; Panayotou G; Suck D; Simos G
    J Mol Biol; 2007 Dec; 374(4):1077-90. PubMed ID: 17976650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Seryl-tRNA synthetase/tRNASer acceptor stem interface is mediated via a specific network of water molecules.
    Eichert A; Oberthuer D; Betzel C; Gessner R; Erdmann VA; Fürste JP; Förster C
    Biochem Biophys Res Commun; 2011 Sep; 412(4):532-6. PubMed ID: 21787751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shuffling of discrete tRNASer regions reveals differently utilized identity elements in yeast and methanogenic archaea.
    Gruic-Sovulj I; Jaric J; Dulic M; Cindric M; Weygand-Durasevic I
    J Mol Biol; 2006 Aug; 361(1):128-39. PubMed ID: 16822522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Only one nucleotide insertion to the long variable arm confers an efficient serine acceptor activity upon Saccharomyces cerevisiae tRNA(Leu) in vitro.
    Himeno H; Yoshida S; Soma A; Nishikawa K
    J Mol Biol; 1997 May; 268(4):704-11. PubMed ID: 9175855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural flexibility of the methanogenic-type seryl-tRNA synthetase active site and its implication for specific substrate recognition.
    Bilokapic S; Rokov Plavec J; Ban N; Weygand-Durasevic I
    FEBS J; 2008 Jun; 275(11):2831-44. PubMed ID: 18422966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fidelity of seryl-tRNA synthetase to binding of natural amino acids from HierDock first principles computations.
    McClendon CL; Vaidehi N; Kam VW; Zhang D; Goddard WA
    Protein Eng Des Sel; 2006 May; 19(5):195-203. PubMed ID: 16517553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. tRNA-dependent amino acid discrimination by yeast seryl-tRNA synthetase.
    Gruic-Sovulj I; Landeka I; Söll D; Weygand-Durasevic I
    Eur J Biochem; 2002 Nov; 269(21):5271-9. PubMed ID: 12392560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic organization, cDNA sequence, bacterial expression, and purification of human seryl-tRNA synthase.
    Vincent C; Tarbouriech N; Härtlein M
    Eur J Biochem; 1997 Nov; 250(1):77-84. PubMed ID: 9431993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition between tRNASer and archaeal seryl-tRNA synthetases monitored by suppression of bacterial amber mutations.
    Lesjak S; Weygand-Durasevic I
    FEMS Microbiol Lett; 2009 May; 294(1):111-8. PubMed ID: 19309487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-terminal truncation of yeast SerRS is toxic for Saccharomyces cerevisiae due to altered mechanism of substrate recognition.
    Lenhard B; Praetorius-Ibba M; Filipic S; Söll D; Weygand-Durasevic I
    FEBS Lett; 1998 Nov; 439(3):235-40. PubMed ID: 9845329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tRNA-interacting factor p43 associates with mammalian arginyl-tRNA synthetase but does not modify its tRNA aminoacylation properties.
    Guigou L; Shalak V; Mirande M
    Biochemistry; 2004 Apr; 43(15):4592-600. PubMed ID: 15078106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The T-loop region of animal mitochondrial tRNA(Ser)(AGY) is a main recognition site for homologous seryl-tRNA synthetase.
    Ueda T; Yotsumoto Y; Ikeda K; Watanabe K
    Nucleic Acids Res; 1992 May; 20(9):2217-22. PubMed ID: 1375735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into substrate promiscuity of human seryl-tRNA synthetase.
    Holman KM; Puppala AK; Lee JW; Lee H; Simonović M
    RNA; 2017 Nov; 23(11):1685-1699. PubMed ID: 28808125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli seryl-tRNA synthetase recognizes tRNA(Ser) by its characteristic tertiary structure.
    Asahara H; Himeno H; Tamura K; Nameki N; Hasegawa T; Shimizu M
    J Mol Biol; 1994 Feb; 236(3):738-48. PubMed ID: 8114091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structural basis for seryl-adenylate and Ap4A synthesis by seryl-tRNA synthetase.
    Belrhali H; Yaremchuk A; Tukalo M; Berthet-Colominas C; Rasmussen B; Bösecke P; Diat O; Cusack S
    Structure; 1995 Apr; 3(4):341-52. PubMed ID: 7613865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.