BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17451441)

  • 1. Prediction of rotational orientation of transmembrane helical segments of integral membrane proteins using new environment-based propensities for amino acids derived from structural analyses.
    Dastmalchi S; Beheshti S; Morris MB; Church WB
    FEBS J; 2007 May; 274(10):2653-60. PubMed ID: 17451441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction.
    Pilpel Y; Ben-Tal N; Lancet D
    J Mol Biol; 1999 Dec; 294(4):921-35. PubMed ID: 10588897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipophobicity and the residue environments of the transmembrane alpha-helical bundle.
    Mokrab Y; Stevens TJ; Mizuguchi K
    Proteins; 2009 Jan; 74(1):32-49. PubMed ID: 18561171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical lipid propensities of amino acid residues in multispan alpha helical membrane proteins.
    Adamian L; Nanda V; DeGrado WF; Liang J
    Proteins; 2005 May; 59(3):496-509. PubMed ID: 15789404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the derivation of propensity scales for predicting exposed transmembrane residues of helical membrane proteins.
    Park Y; Helms V
    Bioinformatics; 2007 Mar; 23(6):701-8. PubMed ID: 17237049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting experimental properties of integral membrane proteins by a naive Bayes approach.
    Martin-Galiano AJ; Smialowski P; Frishman D
    Proteins; 2008 Mar; 70(4):1243-56. PubMed ID: 17876826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A knowledge-based scale for amino acid membrane propensity.
    Punta M; Maritan A
    Proteins; 2003 Jan; 50(1):114-21. PubMed ID: 12471604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting membrane protein architecture: An annotation of structural complexity.
    Arce J; Sturgis JN; Duneau JP
    Biopolymers; 2009 Oct; 91(10):815-29. PubMed ID: 19437433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs.
    Chen K; Jiang Y; Du L; Kurgan L
    J Comput Chem; 2009 Jan; 30(1):163-72. PubMed ID: 18567007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. E(z), a depth-dependent potential for assessing the energies of insertion of amino acid side-chains into membranes: derivation and applications to determining the orientation of transmembrane and interfacial helices.
    Senes A; Chadi DC; Law PB; Walters RF; Nanda V; Degrado WF
    J Mol Biol; 2007 Feb; 366(2):436-48. PubMed ID: 17174324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of the structural features of integral-membrane proteins reverse-environment prediction of integral membrane protein structure (REPIMPS).
    Dastmalchi S; Morris MB; Church WB
    Protein Sci; 2001 Aug; 10(8):1529-38. PubMed ID: 11468350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principles governing amino acid composition of integral membrane proteins: application to topology prediction.
    Tusnády GE; Simon I
    J Mol Biol; 1998 Oct; 283(2):489-506. PubMed ID: 9769220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Major structural determinants of transmembrane proteins identified by principal component analysis.
    Koshi JM; Bruno WJ
    Proteins; 1999 Feb; 34(3):333-40. PubMed ID: 10024020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. beta-Barrel transmembrane proteins: Geometric modelling, detection of transmembrane region, and structural properties.
    Valavanis IK; Bagos PG; Emiris IZ
    Comput Biol Chem; 2006 Dec; 30(6):416-24. PubMed ID: 17097352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins.
    Tribet C; Diab C; Dahmane T; Zoonens M; Popot JL; Winnik FM
    Langmuir; 2009 Nov; 25(21):12623-34. PubMed ID: 19594168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent accessible surface area of amino acid residues in globular proteins: correlation of apparent transfer free energies with experimental hydrophobicity scales.
    Shaytan AK; Shaitan KV; Khokhlov AR
    Biomacromolecules; 2009 May; 10(5):1224-37. PubMed ID: 19334678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of hydrophobic integral membrane protein identification by mild performic acid oxidation-assisted digestion.
    Cao R; Liu Y; Chen P; Lv R; Song Q; Sheng T; He Q; Wang Y; Wang X; Liang S
    Anal Biochem; 2010 Dec; 407(2):196-204. PubMed ID: 20732293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of residues involving cation-pi interactions in different folding types of membrane proteins.
    Gromiha MM; Suwa M
    Int J Biol Macromol; 2005 Mar; 35(1-2):55-62. PubMed ID: 15769516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast method for the quantitative estimation of the distribution of hydrophobic and hydrophilic segments in alpha-helices of membrane proteins.
    Luzhkov VB; Surkov NF
    Membr Cell Biol; 2000; 14(1):89-96. PubMed ID: 11051085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide models of membrane protein folding.
    Rath A; Tulumello DV; Deber CM
    Biochemistry; 2009 Apr; 48(14):3036-45. PubMed ID: 19278229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.