BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 17451671)

  • 1. Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network.
    Nam J; Su YH; Lee PY; Robertson AJ; Coffman JA; Davidson EH
    Dev Biol; 2007 Jun; 306(2):860-9. PubMed ID: 17451671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.
    Duboc V; Lapraz F; Besnardeau L; Lepage T
    Dev Biol; 2008 Aug; 320(1):49-59. PubMed ID: 18582858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maternal Oct1/2 is required for Nodal and Vg1/Univin expression during dorsal-ventral axis specification in the sea urchin embryo.
    Range R; Lepage T
    Dev Biol; 2011 Sep; 357(2):440-9. PubMed ID: 21782809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New regulatory circuit controlling spatial and temporal gene expression in the sea urchin embryo oral ectoderm GRN.
    Li E; Materna SC; Davidson EH
    Dev Biol; 2013 Oct; 382(1):268-79. PubMed ID: 23933172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown.
    Ben-Tabou de-Leon S; Su YH; Lin KT; Li E; Davidson EH
    Dev Biol; 2013 Feb; 374(1):245-54. PubMed ID: 23211652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1.
    Range R; Lapraz F; Quirin M; Marro S; Besnardeau L; Lepage T
    Development; 2007 Oct; 134(20):3649-64. PubMed ID: 17855430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.
    Bergeron KF; Xu X; Brandhorst BP
    Mech Dev; 2011; 128(1-2):71-89. PubMed ID: 21056656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cis-Regulatory sequences driving the expression of the Hbox12 homeobox-containing gene in the presumptive aboral ectoderm territory of the Paracentrotus lividus sea urchin embryo.
    Cavalieri V; Di Bernardo M; Anello L; Spinelli G
    Dev Biol; 2008 Sep; 321(2):455-69. PubMed ID: 18585371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene regulatory networks for ectoderm specification in sea urchin embryos.
    Su YH
    Biochim Biophys Acta; 2009 Apr; 1789(4):261-7. PubMed ID: 19429544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dynamic gene expression patterns of transcription factors constituting the sea urchin aboral ectoderm gene regulatory network.
    Chen JH; Luo YJ; Su YH
    Dev Dyn; 2011 Jan; 240(1):250-60. PubMed ID: 21181943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
    Duboc V; Röttinger E; Besnardeau L; Lepage T
    Dev Cell; 2004 Mar; 6(3):397-410. PubMed ID: 15030762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oral-aboral axis specification in the sea urchin embryo II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus.
    Coffman JA; McCarthy JJ; Dickey-Sims C; Robertson AJ
    Dev Biol; 2004 Sep; 273(1):160-71. PubMed ID: 15302605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal information processing in the sea urchin embryo: modular and intramodular organization of the CyIIIa gene cis-regulatory system.
    Kirchhamer CV; Davidson EH
    Development; 1996 Jan; 122(1):333-48. PubMed ID: 8565846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct and indirect control of oral ectoderm regulatory gene expression by Nodal signaling in the sea urchin embryo.
    Li E; Materna SC; Davidson EH
    Dev Biol; 2012 Sep; 369(2):377-85. PubMed ID: 22771578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cis-Regulatory control of the initial neurogenic pattern of onecut gene expression in the sea urchin embryo.
    Barsi JC; Davidson EH
    Dev Biol; 2016 Jan; 409(1):310-318. PubMed ID: 26522848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ectoderm gene activation in sea urchin embryos mediated by the CCAAT-binding factor.
    Li X; Bhattacharya C; Dayal S; Maity S; Klein WH
    Differentiation; 2002 May; 70(2-3):109-19. PubMed ID: 12076338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular cis-regulatory organization of Endo16, a gut-specific gene of the sea urchin embryo.
    Yuh CH; Davidson EH
    Development; 1996 Apr; 122(4):1069-82. PubMed ID: 8620834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respecification of ectoderm and altered Nodal expression in sea urchin embryos after cobalt and nickel treatment.
    Agca C; Klein WH; Venuti JM
    Mech Dev; 2009; 126(5-6):430-42. PubMed ID: 19368800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.