BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 1745232)

  • 1. TFS1: a suppressor of cdc25 mutations in Saccharomyces cerevisiae.
    Robinson LC; Tatchell K
    Mol Gen Genet; 1991 Nov; 230(1-2):241-50. PubMed ID: 1745232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SDC25, a CDC25-like gene which contains a RAS-activating domain and is a dispensable gene of Saccharomyces cerevisiae.
    Damak F; Boy-Marcotte E; Le-Roscouet D; Guilbaud R; Jacquet M
    Mol Cell Biol; 1991 Jan; 11(1):202-12. PubMed ID: 1986220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of thermosensitive alleles of the CDC25 gene involved in the cAMP metabolism of Saccharomyces cerevisiae.
    Petitjean A; Hilger F; Tatchell K
    Genetics; 1990 Apr; 124(4):797-806. PubMed ID: 2157625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The C-terminal part of a gene partially homologous to CDC 25 gene suppresses the cdc25-5 mutation in Saccharomyces cerevisiae.
    Boy-Marcotte E; Damak F; Camonis J; Garreau H; Jacquet M
    Gene; 1989 Apr; 77(1):21-30. PubMed ID: 2545538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator.
    Martegani E; Vanoni M; Zippel R; Coccetti P; Brambilla R; Ferrari C; Sturani E; Alberghina L
    EMBO J; 1992 Jun; 11(6):2151-7. PubMed ID: 1376246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a mammalian gene structurally and functionally related to the CDC25 gene of Saccharomyces cerevisiae.
    Wei W; Mosteller RD; Sanyal P; Gonzales E; McKinney D; Dasgupta C; Li P; Liu BX; Broek D
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):7100-4. PubMed ID: 1379731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of the CDC25 gene, an upstream element of the RAS/adenylyl cyclase pathway in Saccharomyces cerevisiae, allows immunological identification and characterization of its gene product.
    Vanoni M; Vavassori M; Frascotti G; Martegani E; Alberghina L
    Biochem Biophys Res Commun; 1990 Oct; 172(1):61-9. PubMed ID: 2121145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenic alteration of the distal switch II region of RAS blocks CDC25-dependent signaling functions.
    Mirisola MG; Seidita G; Verrotti AC; Di Blasi F; Fasano O
    J Biol Chem; 1994 Jun; 269(22):15740-8. PubMed ID: 8195227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and analysis of a DNA fragment from Saccharomyces kluyveri that can complement the loss of CDC25 function in Saccharomyces cerevisiae.
    Prigozy T; Gonzales E; Broek D
    Gene; 1992 Aug; 117(1):67-72. PubMed ID: 1644315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway.
    Broek D; Toda T; Michaeli T; Levin L; Birchmeier C; Zoller M; Powers S; Wigler M
    Cell; 1987 Mar; 48(5):789-99. PubMed ID: 3545497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between the Saccharomyces cerevisiae CDC25 gene product and mammalian ras.
    Segal M; Marbach I; Engelberg D; Simchen G; Levitzki A
    J Biol Chem; 1992 Nov; 267(32):22747-51. PubMed ID: 1429624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning of the STE5 gene of Saccharomyces cerevisiae as a suppressor of the mating defect of cdc25 temperature-sensitive mutants.
    Perlman R; Yablonski D; Simchen G; Levitzki A
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5474-8. PubMed ID: 8516289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Saccharomyces cerevisiae CDC25 gene product binds specifically to catalytically inactive ras proteins in vivo.
    Munder T; Fürst P
    Mol Cell Biol; 1992 May; 12(5):2091-9. PubMed ID: 1569942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro reconstitution of cdc25 regulated S. cerevisiae adenylyl cyclase and its kinetic properties.
    Engelberg D; Simchen G; Levitzki A
    EMBO J; 1990 Mar; 9(3):641-51. PubMed ID: 2155776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residues crucial for Ras interaction with GDP-GTP exchangers.
    Segal M; Willumsen BM; Levitzki A
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5564-8. PubMed ID: 8516302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the MSS51 region on chromosome XII of Saccharomyces cerevisiae.
    Simon M; Della Seta F; Sor F; Faye G
    Yeast; 1992 Jul; 8(7):559-67. PubMed ID: 1523888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro interaction between Saccharomyces cerevisiae CDC25 and RAS2 proteins.
    Baroni MD; Marconi G; Parrini MC; Monti P; Alberghina L
    Biochem Biophys Res Commun; 1992 Jul; 186(1):467-74. PubMed ID: 1632785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The overexpression of the 3' terminal region of the CDC25 gene of Saccharomyces cerevisiae causes growth inhibition and alteration of purine nucleotides pools.
    Frascotti G; Coccetti P; Vanoni MA; Alberghina L; Martegani E
    Biochim Biophys Acta; 1991 Jun; 1089(2):206-12. PubMed ID: 1647210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dominant yeast and mammalian RAS mutants that interfere with the CDC25-dependent activation of wild-type RAS in Saccharomyces cerevisiae.
    Powers S; O'Neill K; Wigler M
    Mol Cell Biol; 1989 Feb; 9(2):390-5. PubMed ID: 2651897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and characterization of NSP1, a locus encoding a component of a CDC25-dependent, nutrient-responsive pathway in Saccharomyces cerevisiae.
    Tripp ML; Bouchard RA; Piñón R
    Mol Microbiol; 1989 Oct; 3(10):1319-27. PubMed ID: 2693892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.