These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 1745232)

  • 81. Isolation and characterization of temperature-sensitive mutations in the RAS2 and CYR1 genes of Saccharomyces cerevisiae.
    Mitsuzawa H; Uno I; Oshima T; Ishikawa T
    Genetics; 1989 Dec; 123(4):739-48. PubMed ID: 2558958
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Suppression of defective RAS1 and RAS2 functions in yeast by an adenylate cyclase activated by a single amino acid change.
    De Vendittis E; Vitelli A; Zahn R; Fasano O
    EMBO J; 1986 Dec; 5(13):3657-63. PubMed ID: 3549283
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Cell size modulation by CDC25 and RAS2 genes in Saccharomyces cerevisiae.
    Baroni MD; Martegani E; Monti P; Alberghina L
    Mol Cell Biol; 1989 Jun; 9(6):2715-23. PubMed ID: 2548086
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The N-terminal region of the Saccharomyces cerevisiae RasGEF Cdc25 is required for nutrient-dependent cell-size regulation.
    Belotti F; Tisi R; Martegani E
    Microbiology (Reading); 2006 Apr; 152(Pt 4):1231-1242. PubMed ID: 16549685
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A role for the noncatalytic N terminus in the function of Cdc25, a Saccharomyces cerevisiae Ras-guanine nucleotide exchange factor.
    Chen RA; Michaeli T; Van Aelst L; Ballester R
    Genetics; 2000 Apr; 154(4):1473-84. PubMed ID: 10747046
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Ty element-induced temperature-sensitive mutations of Saccharomyces cerevisiae.
    Kawakami K; Shafer BK; Garfinkel DJ; Strathern JN; Nakamura Y
    Genetics; 1992 Aug; 131(4):821-32. PubMed ID: 1325386
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Structural and functional analyses of Saccharomyces cerevisiae wild-type and mutant RNA1 genes.
    Traglia HM; Atkinson NS; Hopper AK
    Mol Cell Biol; 1989 Jul; 9(7):2989-99. PubMed ID: 2674676
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Identification of SLF1 as a new copper homeostasis gene involved in copper sulfide mineralization in Saccharomyces cerevisiae.
    Yu W; Farrell RA; Stillman DJ; Winge DR
    Mol Cell Biol; 1996 May; 16(5):2464-72. PubMed ID: 8628314
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Isolation and nucleotide sequence of a Saccharomyces cerevisiae protein kinase gene suppressing the cell cycle start mutation cdc25.
    Lisziewicz J; Godany A; Förster HH; Küntzel H
    J Biol Chem; 1987 Feb; 262(6):2549-53. PubMed ID: 3546292
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Temperature-sensitive cdc7 mutations of Saccharomyces cerevisiae are suppressed by the DBF4 gene, which is required for the G1/S cell cycle transition.
    Kitada K; Johnston LH; Sugino T; Sugino A
    Genetics; 1992 May; 131(1):21-9. PubMed ID: 1592236
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The 70-kilodalton adenylyl cyclase-associated protein is not essential for interaction of Saccharomyces cerevisiae adenylyl cyclase with RAS proteins.
    Wang J; Suzuki N; Kataoka T
    Mol Cell Biol; 1992 Nov; 12(11):4937-45. PubMed ID: 1406671
    [TBL] [Abstract][Full Text] [Related]  

  • 92. GSP1 and GSP2, genetic suppressors of the prp20-1 mutant in Saccharomyces cerevisiae: GTP-binding proteins involved in the maintenance of nuclear organization.
    Belhumeur P; Lee A; Tam R; DiPaolo T; Fortin N; Clark MW
    Mol Cell Biol; 1993 Apr; 13(4):2152-61. PubMed ID: 8455603
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Sequence analysis of the translational elongation factor 3 from Saccharomyces cerevisiae.
    Qin SL; Xie AG; Bonato MC; McLaughlin CS
    J Biol Chem; 1990 Feb; 265(4):1903-12. PubMed ID: 2404974
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The Saccharomyces cerevisiae SRK1 gene, a suppressor of bcy1 and ins1, may be involved in protein phosphatase function.
    Wilson RB; Brenner AA; White TB; Engler MJ; Gaughran JP; Tatchell K
    Mol Cell Biol; 1991 Jun; 11(6):3369-73. PubMed ID: 1645449
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Isolation and characterization of SUA5, a novel gene required for normal growth in Saccharomyces cerevisiae.
    Na JG; Pinto I; Hampsey M
    Genetics; 1992 Aug; 131(4):791-801. PubMed ID: 1325384
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Studies of RAS function in the yeast Saccharomyces cerevisiae.
    Wigler M; Field J; Powers S; Broek D; Toda T; Cameron S; Nikawa J; Michaeli T; Colicelli J; Ferguson K
    Cold Spring Harb Symp Quant Biol; 1988; 53 Pt 2():649-55. PubMed ID: 3076094
    [No Abstract]   [Full Text] [Related]  

  • 97. The Cdc25 protein of Saccharomyces cerevisiae is required for normal glucose transport.
    Silljé HH; ter Schure EG; Verkleij AJ; Boonstra J; Verrips CT
    Microbiology (Reading); 1996 Jul; 142 ( Pt 7)():1765-73. PubMed ID: 8757740
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The CCR4 protein from Saccharomyces cerevisiae contains a leucine-rich repeat region which is required for its control of ADH2 gene expression.
    Malvar T; Biron RW; Kaback DB; Denis CL
    Genetics; 1992 Dec; 132(4):951-62. PubMed ID: 1459446
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Null alleles of SAC7 suppress temperature-sensitive actin mutations in Saccharomyces cerevisiae.
    Dunn TM; Shortle D
    Mol Cell Biol; 1990 May; 10(5):2308-14. PubMed ID: 2183030
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The activation of adenylate cyclase by guanyl nucleotides in Saccharomyces cerevisiae is controlled by the CDC25 start gene product.
    Daniel J; Becker JM; Enari E; Levitzki A
    Mol Cell Biol; 1987 Oct; 7(10):3857-61. PubMed ID: 3119992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.