BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 1745233)

  • 1. Highly bioluminescent Bacillus subtilis obtained through high-level expression of a luxAB fusion gene.
    Jacobs M; Hill PJ; Stewart GS
    Mol Gen Genet; 1991 Nov; 230(1-2):251-6. PubMed ID: 1745233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of bacterial luciferase genes from Vibrio harveyi in Bacillus subtilis and in Escherichia coli.
    Karp M
    Biochim Biophys Acta; 1989 Jan; 1007(1):84-90. PubMed ID: 2491790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The beta subunit polypeptide of Vibrio harveyi luciferase determines light emission at 42 degrees C.
    Escher A; O'Kane DJ; Szalay AA
    Mol Gen Genet; 1991 Dec; 230(3):385-93. PubMed ID: 1685011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly bioluminescent Streptococcus thermophilus strain for the detection of diary-relevant antibiotics in milk.
    Jacobs MF; Tynkkynen S; Sibakov M
    Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):405-12. PubMed ID: 8597542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the spectral emission of lux recombinant and bioluminescent marine bacteria.
    Thouand G; Daniel P; Horry H; Picart P; Durand MJ; Killham K; Knox OG; DuBow MS; Rousseau M
    Luminescence; 2003; 18(3):145-55. PubMed ID: 12701090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and detection of bioluminescent strains of Bacillus subtilis.
    Cook N; Silcock DJ; Waterhouse RN; Prosser JI; Glover LA; Killham K
    J Appl Bacteriol; 1993 Oct; 75(4):350-9. PubMed ID: 8226392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a fused LuxAB gene by site-directed mutagenesis.
    Boylan MO; Pelletier J; Dhepagnon S; Trudel S; Sonenberg N; Meighen EA
    J Biolumin Chemilumin; 1989 Jul; 4(1):310-6. PubMed ID: 2678919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A plasmid vector and quantitative techniques for the study of transcription termination in Escherichia coli using bacterial luciferase.
    Peabody DS; Andrews CL; Escudero KW; Devine JH; Baldwin TO; Bear DG
    Gene; 1989 Feb; 75(2):289-96. PubMed ID: 2653966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat-inducible translational coupling in Bacillus subtilis.
    Fujiwara S; Tsubokura N; Kurusu Y; Minami K; Kobayashi Y
    Nucleic Acids Res; 1990 Feb; 18(4):739-44. PubMed ID: 2107530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PCR based gene engineering of the Vibrio harveyi lux operon and the Escherichia coli trp operon provides for biochemically functional native and fused gene products.
    Hill PJ; Swift S; Stewart GS
    Mol Gen Genet; 1991 Apr; 226(1-2):41-8. PubMed ID: 2034229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A promoter-trap vector for clock-controlled genes in the cyanobacterium Synechocystis sp. PCC 6803.
    Aoki S; Kondo T; Ishiura M
    J Microbiol Methods; 2002 May; 49(3):265-74. PubMed ID: 11869791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial luciferase alpha beta fusion protein is fully active as a monomer and highly sensitive in vivo to elevated temperature.
    Escher A; O'Kane DJ; Lee J; Szalay AA
    Proc Natl Acad Sci U S A; 1989 Sep; 86(17):6528-32. PubMed ID: 2671993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis.
    Hulett FM; Lee J; Shi L; Sun G; Chesnut R; Sharkova E; Duggan MF; Kapp N
    J Bacteriol; 1994 Mar; 176(5):1348-58. PubMed ID: 8113174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologous gene expression in Campylobacter coli: the use of bacterial luciferase in a promoter probe vector.
    Purdy D; Park SF
    FEMS Microbiol Lett; 1993 Aug; 111(2-3):233-7. PubMed ID: 8405932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of luciferase genes from different origins in Bacillus subtilis.
    Lampinen J; Koivisto L; Wahlsten M; Mäntsälä P; Karp M
    Mol Gen Genet; 1992 Apr; 232(3):498-504. PubMed ID: 1588918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a Tn7-lux system for gene expression studies in gram-negative bacteria.
    Shen H; Gold SE; Tamaki SJ; Keen NT
    Gene; 1992 Dec; 122(1):27-34. PubMed ID: 1333438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translational coupling in a penP-lacZ gene fusion in Bacillus subtilis and Escherichia coli: use of AUA as a restart codon.
    Peijnenburg AA; Venema G; Bron S
    Mol Gen Genet; 1990 Apr; 221(2):267-72. PubMed ID: 2115112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of monomeric bacterial luciferases by fusion of luxA and luxB genes in Vibrio harveyi.
    Olsson O; Escher A; Sandberg G; Schell J; Koncz C; Szalay AA
    Gene; 1989 Sep; 81(2):335-47. PubMed ID: 2680771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of the thermal inactivation and the refolding of bacterial luciferases in Bacillus subtilis and in Escherichia coli differ.
    Gnuchikh E; Baranova A; Schukina V; Khaliullin I; Zavilgelsky G; Manukhov I
    PLoS One; 2019; 14(12):e0226576. PubMed ID: 31869349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258.
    Corbisier P; Ji G; Nuyts G; Mergeay M; Silver S
    FEMS Microbiol Lett; 1993 Jun; 110(2):231-8. PubMed ID: 8349095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.