These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17452423)

  • 21. 2-Hydroxyisoflavanone dehydratase is a critical determinant of isoflavone productivity in hairy root cultures of Lotus japonicus.
    Shimamura M; Akashi T; Sakurai N; Suzuki H; Saito K; Shibata D; Ayabe S; Aoki T
    Plant Cell Physiol; 2007 Nov; 48(11):1652-7. PubMed ID: 17921150
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lotus japonicus Triterpenoid Profile and Characterization of the CYP716A51 and LjCYP93E1 Genes Involved in Their Biosynthesis In Planta.
    Suzuki H; Fukushima EO; Shimizu Y; Seki H; Fujisawa Y; Ishimoto M; Osakabe K; Osakabe Y; Muranaka T
    Plant Cell Physiol; 2019 Nov; 60(11):2496-2509. PubMed ID: 31418782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phytochelatin synthases of the model legume Lotus japonicus. A small multigene family with differential response to cadmium and alternatively spliced variants.
    Ramos J; Clemente MR; Naya L; Loscos J; Pérez-Rontomé C; Sato S; Tabata S; Becana M
    Plant Physiol; 2007 Mar; 143(3):1110-8. PubMed ID: 17208961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aligning a new reference genetic map of Lupinus angustifolius with the genome sequence of the model legume, Lotus japonicus.
    Nelson MN; Moolhuijzen PM; Boersma JG; Chudy M; Lesniewska K; Bellgard M; Oliver RP; Swiecicki W; Wolko B; Cowling WA; Ellwood SR
    DNA Res; 2010 Apr; 17(2):73-83. PubMed ID: 20133394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organization and expression of genes in the genomic region surrounding the glutamine synthetase gene Gln1 from Lotus japonicus.
    Thykjaer T; Danielsen D; She Q; Stougaard J
    Mol Gen Genet; 1997 Aug; 255(6):628-36. PubMed ID: 9323367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plant growth-promoting fungus, Trichoderma koningi suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus.
    Masunaka A; Hyakumachi M; Takenaka S
    Microbes Environ; 2011; 26(2):128-34. PubMed ID: 21502738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induction of isoflavonoid biosynthesis in Lotus japonicus after UV-B irradiation.
    Kaducová M; Monje-Rueda MD; García-Calderón M; Pérez-Delgado CM; Eliášová A; Gajdošová S; Petruľová V; Betti M; Márquez AJ; Paľove-Balang P
    J Plant Physiol; 2019 May; 236():88-95. PubMed ID: 30939333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A metabolic gene cluster in Lotus japonicus discloses novel enzyme functions and products in triterpene biosynthesis.
    Krokida A; Delis C; Geisler K; Garagounis C; Tsikou D; Peña-Rodríguez LM; Katsarou D; Field B; Osbourn AE; Papadopoulou KK
    New Phytol; 2013 Nov; 200(3):675-690. PubMed ID: 23909862
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vestitol as a chemical barrier against intrusion of parasitic plant Striga hermonthica into Lotus japonicus roots.
    Ueda H; Sugimoto Y
    Biosci Biotechnol Biochem; 2010; 74(8):1662-7. PubMed ID: 20699571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes.
    Wang Z; Cheng K; Wan L; Yan L; Jiang H; Liu S; Lei Y; Liao B
    BMC Genomics; 2015 Dec; 16():1053. PubMed ID: 26651343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cloning and expression pattern of a novel microspore-specific gene encoding hypersensitive-induced response protein (LjHIR1) from the model legume, Lotus japonicus.
    Hakozaki H; Endo M; Masuko H; Park JI; Ito H; Uchida M; Kamada M; Takahashi H; Higashitani A; Watanabe M
    Genes Genet Syst; 2004 Oct; 79(5):307-10. PubMed ID: 15599061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nodulation deficiency caused by fast neutron mutagenesis of the model legume Lotus japonicus.
    Hoffmann D; Jiang Q; Men A; Kinkema M; Gresshoff PM
    J Plant Physiol; 2007 Apr; 164(4):460-9. PubMed ID: 17363108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of the Lotus japonicus genome.
    Shimada N; Sasaki R; Sato S; Kaneko T; Tabata S; Aoki T; Ayabe S
    J Exp Bot; 2005 Sep; 56(419):2573-85. PubMed ID: 16087700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural analysis of a Lotus japonicus genome. II. Sequence features and mapping of sixty-five TAC clones which cover the 6.5-mb regions of the genome.
    Nakamura Y; Kaneko T; Asamizu E; Kato T; Sato S; Tabata S
    DNA Res; 2002 Apr; 9(2):63-70. PubMed ID: 12056416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two distinct EIN2 genes cooperatively regulate ethylene signaling in Lotus japonicus.
    Miyata K; Kawaguchi M; Nakagawa T
    Plant Cell Physiol; 2013 Sep; 54(9):1469-77. PubMed ID: 23825220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular and cellular characterisation of LjAMT2;1, an ammonium transporter from the model legume Lotus japonicus.
    Simon-Rosin U; Wood C; Udvardi MK
    Plant Mol Biol; 2003 Jan; 51(1):99-108. PubMed ID: 12602894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus.
    Schauser L; Wieloch W; Stougaard J
    J Mol Evol; 2005 Feb; 60(2):229-37. PubMed ID: 15785851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism.
    Takos A; Lai D; Mikkelsen L; Abou Hachem M; Shelton D; Motawia MS; Olsen CE; Wang TL; Martin C; Rook F
    Plant Cell; 2010 May; 22(5):1605-19. PubMed ID: 20453117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus.
    Perry JA; Wang TL; Welham TJ; Gardner S; Pike JM; Yoshida S; Parniske M
    Plant Physiol; 2003 Mar; 131(3):866-71. PubMed ID: 12644638
    [No Abstract]   [Full Text] [Related]  

  • 40. Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response.
    Ghosh A; Islam T
    BMC Plant Biol; 2016 Apr; 16():87. PubMed ID: 27083416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.