These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17452423)

  • 41. Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis.
    Asamizu E; Nakamura Y; Sato S; Tabata S
    Plant Mol Biol; 2004 Feb; 54(3):405-14. PubMed ID: 15284495
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of a Flavin Monooxygenase-Like Flavonoid 8-Hydroxylase with Gossypetin Synthase Activity from Lotus japonicus.
    Hiraga Y; Shimada N; Nagashima Y; Suda K; Kanamori T; Ishiguro K; Sato Y; Hirakawa H; Sato S; Akashi T; Tanaka Y; Ohta D; Aoki K; Shibata D; Suzuki H; Kera K
    Plant Cell Physiol; 2021 Jul; 62(3):411-423. PubMed ID: 33416873
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural analysis of a Lotus japonicus genome. V. Sequence features and mapping of sixty-four TAC clones which cover the 6.4 mb regions of the genome.
    Kato T; Sato S; Nakamura Y; Kaneko T; Asamizu E; Tabata S
    DNA Res; 2003 Dec; 10(6):277-85. PubMed ID: 15029958
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression of the CLE-RS3 gene suppresses root nodulation in Lotus japonicus.
    Nishida H; Handa Y; Tanaka S; Suzaki T; Kawaguchi M
    J Plant Res; 2016 Sep; 129(5):909-919. PubMed ID: 27294965
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Knockdown of LjALD1, AGD2-like defense response protein 1, influences plant growth and nodulation in Lotus japonicus.
    Chen W; Li X; Tian L; Wu P; Li M; Jiang H; Chen Y; Wu G
    J Integr Plant Biol; 2014 Nov; 56(11):1034-41. PubMed ID: 24797909
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of novel genes involved in phosphate accumulation in Lotus japonicus through Genome Wide Association mapping of root system architecture and anion content.
    Giovannetti M; Göschl C; Dietzen C; Andersen SU; Kopriva S; Busch W
    PLoS Genet; 2019 Dec; 15(12):e1008126. PubMed ID: 31856195
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway.
    Takos AM; Knudsen C; Lai D; Kannangara R; Mikkelsen L; Motawia MS; Olsen CE; Sato S; Tabata S; Jørgensen K; Møller BL; Rook F
    Plant J; 2011 Oct; 68(2):273-86. PubMed ID: 21707799
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatial and temporal organization of sucrose metabolism in Lotus japonicus nitrogen-fixing nodules suggests a role for the elusive alkaline/neutral invertase.
    Flemetakis E; Efrose RC; Ott T; Stedel C; Aivalakis G; Udvardi MK; Katinakis P
    Plant Mol Biol; 2006 Sep; 62(1-2):53-69. PubMed ID: 16897473
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis.
    Patil G; Valliyodan B; Deshmukh R; Prince S; Nicander B; Zhao M; Sonah H; Song L; Lin L; Chaudhary J; Liu Y; Joshi T; Xu D; Nguyen HT
    BMC Genomics; 2015 Jul; 16(1):520. PubMed ID: 26162601
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conservation of Arabidopsis flowering genes in model legumes.
    Hecht V; Foucher F; Ferrándiz C; Macknight R; Navarro C; Morin J; Vardy ME; Ellis N; Beltrán JP; Rameau C; Weller JL
    Plant Physiol; 2005 Apr; 137(4):1420-34. PubMed ID: 15778459
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Induction and spatial organization of polyamine biosynthesis during nodule development in Lotus japonicus.
    Flemetakis E; Efrose RC; Desbrosses G; Dimou M; Delis C; Aivalakis G; Udvardi MK; Katinakis P
    Mol Plant Microbe Interact; 2004 Dec; 17(12):1283-93. PubMed ID: 15597734
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cloning, functional expression, and mutational analysis of a cDNA for Lotus japonicus mitochondrial phosphate transporter.
    Nakamori K; Takabatake R; Umehara Y; Kouchi H; Izui K; Hata S
    Plant Cell Physiol; 2002 Oct; 43(10):1250-3. PubMed ID: 12407206
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chromosomal map of the model legume Lotus japonicus.
    Pedrosa A; Sandal N; Stougaard J; Schweizer D; Bachmair A
    Genetics; 2002 Aug; 161(4):1661-72. PubMed ID: 12196409
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Lotus basic leucine zipper protein with a RING-finger motif negatively regulates the developmental program of nodulation.
    Nishimura R; Ohmori M; Fujita H; Kawaguchi M
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):15206-10. PubMed ID: 12397181
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lotus japonicus as a platform for legume research.
    Sato S; Tabata S
    Curr Opin Plant Biol; 2006 Apr; 9(2):128-32. PubMed ID: 16480917
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The advantages of cDNA microarray as an effective tool for identification of reproductive organ-specific genes in a model legume, Lotus japonicus.
    Endo M; Matsubara H; Kokubun T; Masuko H; Takahata Y; Tsuchiya T; Fukuda H; Demura T; Watanabe M
    FEBS Lett; 2002 Mar; 514(2-3):229-37. PubMed ID: 11943157
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of two oxygenase genes involved in the respective biosynthetic pathways of canonical and non-canonical strigolactones in Lotus japonicus.
    Mori N; Nomura T; Akiyama K
    Planta; 2020 Jan; 251(2):40. PubMed ID: 31907631
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Induction of isoflavonoid pathway in the model legume Lotus japonicus: molecular characterization of enzymes involved in phytoalexin biosynthesis.
    Shimada N; Akashi T; Aoki T; Ayabe S
    Plant Sci; 2000 Dec; 160(1):37-47. PubMed ID: 11164575
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gibberellin controls the nodulation signaling pathway in Lotus japonicus.
    Maekawa T; Maekawa-Yoshikawa M; Takeda N; Imaizumi-Anraku H; Murooka Y; Hayashi M
    Plant J; 2009 Apr; 58(2):183-94. PubMed ID: 19121107
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mesorhizobium loti increases root-specific expression of a calcium-binding protein homologue identified by promoter tagging in Lotus japonicus.
    Webb KJ; Skøt L; Nicholson MN; Jørgensen B; Mizen S
    Mol Plant Microbe Interact; 2000 Jun; 13(6):606-16. PubMed ID: 10830260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.